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Abstract 5719 * - 
We a re  concerned with the filtering of a message from additive noise when message 

and noise a re  statistically independent processes, and our purpose is to gain some 
insight into the process of filtering. To th is  end we investigate the performance and 
behavior of linear and nonlinear no-memory filters. 

A measure of the performance of filters is proposed which compares the filter 
under study to an optimum attenuator acting on the same input. The noise level (noise- 
to-message power ratio) is emphasized as an independent parameter important to the 
behavior and the performance of both linear and nonlinear filters. For  optimum and 
nonoptimum linear filters, the effect of the noise level on the performance is the 
specific object of study. 

For  nonlinear no-memory filters, after considering the determination of the opti- 
mum filter for mean-square and non mean-square criteria, we  investigate the charac- 
terist ics of the E s q a g e  and the noise for which the optimum mean-square filter 
reduces to an attenuator. A s  expected, Gaussian message and Gaussian noise wi l l  give 
such a filter but there a re  many other cases, some critically dependent on the noise 
level, for which this result occurs. 

At the other extreme of behavior, perfect separation by a nonlinear no-memory 
filter wi l l  not occur for any message of interest, and we consider the selection of the 
message of a defined class which will  give the smallest (or  largest)  average weighted 
error .  

For a given noise, a given e r r o r  criterion, and a known filter we consider mes- 
sages that have prescribed peak and average power. We find that a message quantized 
at four different levels will  give, by proper choice of the quantization levels, both the 
maximum and minimum achievable average weighted error .  

The same type of quantized message will  be optimum i f  w e  now carry out optimiza- 
tion among the filters, as wel l  as among the messages. This result allows us to 
determine lower bounds on the average weighted e r ro r  for mean-square and non mean? 

- 

__ - -- 

-__ 

square e r r o r  criteria. 
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I. INTRODUCTION 

In this work we a r e  concerned with the filtering of a message from additive noise 
when message and noise a re  statistically independent processes. In most of the recent 

one o r  both of the following aspects of the problem a r e  emphasized: the char- 
acterization of the filter belonging to some class and the determination of the filter of 
this class which is optimum in some sense. Our purpose here is slightly different, and 
with the ultimate goal of gaining some insight into the process of filtering w e  study the 
performance of optimum and nonoptimum filters. We note that for a given noise and a 
specific e r r o r  criterion the message statistics determine formally the optimum filter 
and the resulting performance. Whether or not the performance is satisfactory will 
depend upon the message statistics, and we would like to know the characteristics of 
the message which lead to a good o r  poor separation from the noise. 
ically linear filters and nonlinear no-memory filters. 

W e  study specif- 

1 .1  MEASURE OF THE FILTER PERFORMANCE 

If w e  refer, for instance, to mean-square filtering, the success of the filtering oper- 
ation, that is, how close the output of the filter y(t) is to the message m(t) in the mean- 
square sense, is measured by the normalized e r ro r  

- 
2 

P 

The normalized e r r o r  varies from zero for no e r r o r  to one for  no output, which is the 
largest e r r o r  that an optimum filter wi l l  give. It can be larger than one for a nonopti- 
mum filter. 
bution of the  filter to the result and, therefore, is not a good measure of filter 
performance. One way of characterizing the filter performance might be to compare 
the normalized e r ror  at the output of the filter to the "normalized e r ro r  at the input," 

2 n 
-. - 

2 m 
input, would have an appreciable performance by this criterion. Here, we  shall use 
the optimum attenuator as a reference system in the measure of the performance of 
filters. This is ,  as we  shall see, related to the commonly used signal-to-noise ratio 
performance. Before proceeding with this discussion we  shall examine more closely 
the mean-square performance of the optimum attenuator. 

The normalized error ,  however, does not indicate specifically the contri- 

- 
However, an attenuator, which performs a generally unimportant operation on the 

1 .2  THE OPTIMUM ATTENUATOR 

The output of an attenuator is 

y(t) = a[m(t)+n(t)] 

1 



when the input is 

x(t) = m(t) t n(t) 

and a is the attenuation constant. The mean-square e r r o r  is 

- 
e 2 = {a[m(t)tn(t)~-s(t))~.  

If m(t) and n(t) a r e  statistically independent and, furthermore, have zero mean, then 

e2 is minimized for 
- 

Let us define k by 

2 2 n (t) = k m (t); 

k is the normalized e r ro r  at the input which we call the relative noise level. 
of the power spectra, the factor k is defined by 

In terms 

in which S (0) is the noise spectrum and Smm(a) the message spectrum. nn 
The expression for the optimum attenuator becomes 

1 
1 t k '  

a = -  

The normalized e r ro r  for the optimum attenuator becomes 

- 
e -  2 k  

m 

- - -  
l + k '  - 

2 

We see  that the optimum attenuator gives an e r ro r  that is smaller than the e r ro r  
The e r r o r  at the at  the input, k. 

output of an attenuator 

Let us  justify this result by physical reasoning. 

e(t) = (1-a) m(t) t an(t) 

has two components, the e r ro r  resulting from the attenuation of the message (1-a) m(t) 
and the e r ror  resulting from noise an(t) .  (Under the assumption of statistical indepen- 
dence we add the mean-square e r ro r  resulting from each component to obtain the total 
mean-square error.)  Thus the normalized mean-square e r ro r  is 

- 
9 

- -  e& - (1-a)2 t a2k. - 
3 

2 



Fig. 1. Geometric interpretation of the mean-square e r r o r  
resulting from attenuation. 

This can be interpreted as the square of the distance to the origin of a point of rectan- 
gular coordinates (see Fig. 1) 

x = I - a  1 

where x1 is the rms  normalized e r ror  resulting from message attenuation and y1 is 
the rms  normalized e r r o r  resulting from noise. 
the point (xl, y,) moves on the line y = J k  (1-x) in the x. y plane. 

The minimum distance to the origin occurs for point M, and the distance is easily 
found by writing the area of the triangle 

If a is changed with k held constant, 

dis t (0M) X I J ~  - -- 
2 2 A r e a  = 

2 k  [dist(OM)] = ~+k. 

The input rms  e r ro r  is represented by the distance OA. 
choose any point on the segment AB. 
get the point B. 

The attenuator allows us to 
If the relative noise level k is very large, we 

The minimum distance OM w i l l  always be less than or equal to one. 

1 .3  PERFORMANCE INDEX AND NOISE-TO-SIGNAL RATIO PERFORMANCE 

For  mean-square filtering we  shall use the coefficient 

2 I opt att e 

to measure the performance of an optimum filter. 
ficient, called it the performance index for noise filters. 

L ~ b b o c k , ~  who introduced this coef- 

Optimum filtering is generally used in two types of applications, both of which lead 

3 



to different requirements on the filter and to slightly different evaluations of their per- 

formanc e. 
In control applications it is generally required that the desired message be approxi- 

mated as closely as possible at the output of the filter, both in magnitude and in phase. 

Therefore, any operation that reduces the mean-square e r ro r  below the noise power 
at the input w i l l  be beneficial. The performance index indicates how a possibly com- 
plicated optimum filter ratio compares with a simple attenuator. 

In communication applications our interest is in the waveform of the message for 
which the performance index is more significant, since the attenuator used as reference 
will bring no new knowledge of the signal waveform. 
index is simply related to the commonly used noise-to-signal ratio performance. The 
performance index compares the normalized e r ro r  of the optimum filter with the nor- 
malized error  of the optimum attenuator operating on the same input at the same noise 
level. 
levels of the optimum filter and the optimum attenuator giving the same error .  To 
establish this second result we need some definitions and derivations concerning noise- 
to-signal ratio performance. 

Furthermore, the performance 

On the other hand, the noise-to-signal ratio performance compares the noise 

5 In this we follow the work of Hause. 

a. Generalized Nois e-to-Signal Ratio Performance 

For  analytical convenience in the application to the performance of linear filters we 
shall use the noise-to-signal power ratio instead of the signal-to-noise power ratio, 
which is commonly found. 
we shall conserve here the common designation of signal-to-noise ratio. 
the words signal and message a re  equivalent.) When signal and noise a r e  additive and 
statistically independent, the noise-to-signal power ratio is commonly defined as 

(Although we call the message the desired output of the filter 
Therefore, 

L m 

Whenever a filter is operating on the input x(t) = m(t) t n(t) and gives an output y(t), 
then we define a new desired output S such that S = Cm, in which C is a constant chosen 
so that 

m(y-Cm) = 0. (1) 

The noise is now (y-Cm), and for the noise-to-signal power ratio at the output of the 
filter we find 

This definition, which makes the new signal and the new noise at the output of the filter 

4 



linearly independent, reduces to the common definition when the signal and noise are 
statistically independent. 
ratio 
symbol 

(We use either the noise level k o r  the noise-to-signal power 
at t h e  input of the filter for which we have statistical independence, and only the 

at the output of the filter.) If we make use of the correlation coefficient 

then we  can w r i t e  Eq. 2 as 

- 1. 1 -- 
rout - 2 

PmY 
5 Hause has shown that rout is minimized by using the optimum mean-square filter 

followed by an arbitrary amount of gain. 
use the known result that the e r ro r  is uncorrelated with any operation of the same class 

For the optimum mean-square filter we can 

- - -  - 
2 2  2 2  on the same input to write y(m-y) = 0, my = y , e = m - y , and 

These expressions relate simply the normalized e r r o r  to the noise-to-signal ratio at 
the output of an optimum mean-square filter. To connect this result with the behavior of 
the optimum attenuatar we consider the graph of Fig. 2 which gives the normalized e r ro r  
versus the noise level k. 

From Eq. 3 we see  that for the optimum mean-square filter of some class the noise- 
A to-signal ratio at the output is given by B. 

and it is clear  that for the attenuator the noise-to-signal ratio is katt. 
One such filter is the optimum attenuator, 

Therefore, the 

1 

ATT 

FlLT 

0 

L 

m !----dl/ 
I t  

k~~~ ko k 

2. Normalized e r ro r  versus noise-to-signal ratio. 



output noise-to-signal ratio of an optimum mean-square filter is the input noise level 
of the optimum attenuator which gives the same normalized e r ror .  

at the noise level k the noise-to-signal ratio performance will  be 

performance index wi l l  be 

For  a filter operating r 
Ilin kO 

=&, and the 0 

A 
B 

r 
Out in Fig. 2. Since rout = - and A simple geometric construction allows us to find - 

rin 

in which d, the distance shown in Fig. 2, is obtained rout A 
Bko - d '  rin = k we have - - - - - - 

0' rin 
immediately when ko and the normalized e r ro r  of the optimum mean-square filter a r e  

known. The curves of 

- 
2 

2 

e 

m 
versus k, which give a constant value to d, a r e  given by 

filt - 
k -. For  d = 1 we have, as expected, the normalized e r ror  of the optimum 

2 d t k  
ilt Ll m = 

attenuator. 
It appears generally more meaningful to use a reference system operating at the 

noise level of the filter under study, and we shall therefore emphasize the performance 
index. 
index for non mean-square cri teria just as well. 

We note that by using the same reference system we can define a performance 

1 . 4  IMPORTANCE OF THE RELATIVE NOISE LEVEL 

A s  w a s  apparent for the optimum attenuator, the performance of a filter is dependent 
This dependence has not been exploited in filtering and is of on the relative noise level. 

interest on both theoretical and practical grounds. 
The relative noise level is a parameter that is independent of the signal and noise 

statistics and is somewhat within our control. If filtering is considered as an alterna- 
tive to a change of message power or  in conjunction with such a change, then the effect 
of the noise level on the filtering e r ro r  wi l l  be of fundamental importance. In some 
filtering problems a more appropriate description of the noise might be in terms of 
stationary statistics with a slowly varying level. 
it is also essential to know how the change of noise level will affect the performance of 
such a filter. We shall, in several instances in this report, take the noise level to be 
an explicit parameter and study its effect on the performance of optimum and nonopti- 
mum filters. Our first application is to linear filtering. 

If a time-invariant filter is to be used, 

6 



11. EFFECT OF NOISE LEVEL ON THE MEAN-SQUARE 
PERFORMANCE OF LINEAR FILTERS 

In this section we make use of the concepts and parameters discussed in Section I to 
study the performance of linear systems. 
be the noise level. We consider, first,  optimum mean-square filters and study the effect 
of the noise level on the normalized error ,  the performance index, and the noise-to- 
signal ratio performance. 
level k 

In each case the independent parameter wi l l  

We then turn to a linear filter that is optimum at some noise 
and study its performance at noise levels other than k 

0 0' 

2.1 PERFORMANCE OF OPTIMUM LINEAR FILTERS 

Here, for simplicity, we shall not take into account the realizability condition. We 
study, therefore, the irreducible e r ror  that corresponds to an arbitrarily large delay in 
filtering and to the best performance of a linear filter. 
the optimum linear filter, is 

H (a), the system function of 
6 opt 

in which Smm(w) and hm(w) a r e  the power spectra of the message and the noise, respec- 
tively. Furthermore, for the normalized mean-square e r r o r  we have 

L m 

The integral sign without limits w i l l  indicate integration from -a to +a. 

Note that if  Snn(w) = kSmm(w), we have H 

k 
l + k '  

(w) = - which is the optimum atten- opt 1 t k '  
- 

2 
e -  

m 
uator, and also= - - 

A rapid but vague estimate of the performance of the optimum linear filter can be 
obtained by comparing the spectra of message and noise. 
If the spectra a r e  identical within a scale factor, we do not get any separation with a 
linear filter; if they have small overlapping regions, a substantial separation can be 
expected. 

Limiting cases a re  clear-cut: 

a. Variation of Mean-Square Error  with Noise Level 

Let Snno(w) be such that 

7 



and let us consider the case for which the shapes of the noise spectrum and the message 
spectrum are fixed, but the relative noise level can change. Then 

where k is the relative noise level. 
We a r e  interested here in the performance of the linear filter that is optimized at 

each noise level. 
k, is 

The normalized error ,  expressed in terms of @ (a), Bnno(w), and mm 

We consider this expression to be a function of k only and wish to study some of its 
properties. For k = 0, P(k) = 0, since the integrand becomes identically zero. If 

k + 00, then 

To obtain this r e s u l t  we require that Hmrn(w) be much less than k@ (a) at all frequencies 

when k is sufficiently large. This condition is not satisfied at the zeros of Bnno(w). The 
whole integrand vanishes, however, at those points and the contribution to the integral of 
small regions in w around the zeros of @ nno 
other points the condition @ (w) << k@nno(u) can be fulfilled for sufficiently large k.  

(Note that we a re  excluding the cases in which message and noise a re  strictly band- 
limited. 
separation at any noise level.) 

a continuous function of k for all W.  

nno 

(0) can be made arbitrarily small. A t  all 

mm 

For instance, i f  part of the message bandwidth is free from noise, we get some 

P(k) is a continuous function of k, since the integrand in the numerator of Eq. 6 is 

Fig. 3. Normalized e r ro r  of the optimum linear filter versus noise level. 

8 



It is shown in Appendix A that the normalized e r ro r  is a monotonically increasing 
concave function of the relative noise level k. The rate of increase, however, is always 
less thln the r&,te of increase of the relative noise level; hence, the slope is S 1. The 

slope is equal to 1 at the origin, but we know that for no noise at the input the optimum 
filter becomes 

F o r  such a device B(k) = k and dp/dk = 1. We note for future use that any tangent to 

the p(k) curve will  have a slope S 1 and will intersect the p(k) axis between zero and 
one. p(k) can be sketched as shown in Fig.  3. 

b. Performance Index 

We defined the performance index for an optimum filter as the ratio of its normalized 
e r ro r  to the normalized e r ro r  of the optimum attenuator. 
function of the relative noise level k, we  write 

If we consider this index as a 

For  k = 0 w e  write 

For  k - 00 under conditions mentioned before we  can w r i t e  

Thus at zero and very large noise levels the optimum linear filter cannot perform any 
better than the optimum attenuator. 

We wish to show that q(k) C 1 for all k, and this requires 

9 



which can be written 

J 
Let 

Inequality (7) is then written 

If a is a constant, then inequality (8) reduces to an equa1,;y from the definition of Snno(w). 

If the integrand of (8) is positive, that is, Snno(w) 2 Smm(w), then a S - ltk' 
integrand is negative, we have a 3 - l + k '  
satisfied and q(C) S 1 for all k. 

and if  the 

It is therefore clear that inequality (8) is 

By a similar reasoning it is possible to show that the slope of q(k) at the origin is 
always negative. This slope at k = 0 is 

- - 
.=o 

This initial slope gives an indication of the performance index at low noise levels. 

all k and goes to one for k = 0 and k - 00, q(k) w i l l  go through one o r  several minima 
for 0 S k < 00. 

c.  Output Noise-to-Signal Ratio 

Since we have found that q(k) is a continuous function of k, which is always S 1 for 

We established in Section I that the noise-to-signal ratio at the output of an optimum 

10 



mean-square filter of some class is given by 

-- 
2 2  e /m 

1 - e2/m2 
- -  r =  

We apply this result to the o p t & m ~  linear filter and study the dependence of I' on k, the 
noise level. If p(k) denotes e /m2 as before, we can write 2 

- 1. 
1 - B (b.1 roc) = - 

1 - B M  l - B ( k )  

From the properties of p(k) we immediately have the facts that r(k) will  be a monotoni- 
cally increasing function of k and that r(0) = 0, r(k) - Q) as k - od. Furthermore, we 
have 

d r k )  
dk 

and 

B'(0) 
= 1  - - 

k=O [ 1-fi(0)]2 

Equations 9 can be established without difficulty. 
that r (k)  is a concave function of k, and this is proved in Appendix B. 

It is slightly more difficult to show 

d. Noise-to-Signal Ratio Performance 

This common measure of performance compares the noise-to-signal ratios at the 
input and the output of the filter. We have 

'in 

It can be  own easily L a t  - = 1, and that for k -00 we have 

11 



Expression (10) is clearly equal to the slope of rout as  k - Q). The slope of- rout at the 
rin 

ATTENUATOR 
I 

Fig. 4. Performance of linear filters for large noise-to-signal ratios. 

origin, which gives an indication of the performance at low noise levels, is 

It is of interest to note an apparent discrepancy between the noise-to-signal ratio 
performance and the performance index. We found earlier that q(k) - 1 for k - 0 6  and, 
therefore, that the optimum linear filter does not perform better than the optimum 

attenuator as k - 00.  We find here that - rout can be substantially less than 1 for k - Q). 

rin 

$ut - = 1 for all k, this seems to contradict 

rin 
This difference is explained by considering the graph of Fig. 4. 

Since the optimum attenuator leads to 

the previous result. 

can be less  than 1. 

the optimum attenuator gives the incrementally lower normalized e r ror  of the optimum 
That is, a substantial change of input noise level is needed before 

12 



linear filter, but this is clearly an illusory improvement. 

2 . 2  PERFORMANCE OF NONOPTIMUM LINEAR FILTERS 

We show in this section that both the normalized e r ro r  and the output noise-to-signal 
If the linear ratio of an arbitrary linear filter a r e  linear functions of the noise level k. 

filter is optimum at noise level k 
k = ko wil l  give its behavior for k # k 

then the tangents to f3 (k) and r (k) at point 
0' opt opt 

0' 

a. Normalized Error  ,of a Linear Fil ter 

Let h(t) be the impulse response of an arbitrary linear system, H(o) the system 
function, and x(t) and y(t) the input and the output, respectively. We have x(t) = m(t) + n(t), 
as before, and w e  are interested in the performance of this system as a filter for the 
extraction of m(t). 

y(t) = s h(t) x(t-r) d r  = ml(t)  t nl(t)  

nl(t) e Sh(T)n(t-T) dT. 

If the message alone is applied to the input, the mean-square e r ro r  becomes 

- 
2 2 e = (ml-m) . m 

If both message and noise are applied to the input, 

- - 
2 2 2 2  = (y-m) = (mltnl-m) = (ml-m) t n1 t 2nl(ml-m), 2 

em+n 

but 

and 

m(t-rl) n(t-T2) = 0, 

since message and noise a r e  uncorrelated and have zero mean. Hence 

- 
n lml  = 0, 

and, similarly, 

13 



n m = O  1 

and 
- - -  - 

2 2  2 2 
mtn  m 1' = (ml-m) t n1 = e2 t n e 

Here, 7 is the mean-square value of the output of the system when noise alone is 
applied to it. 

1 

If we define n,(t) by 

and 
- -  

2 2 n = m ,  
0 

then the mean-square value of the output of the system when n (t) is applied to it is 
0 

Here, C is a constant, 

and 

- - 
e = e2 t Ck. m t n  m 

The mean-square e r ro r  varies linearly with the relative noise level k. 
e r ro r  is 

The normalized 

- - 
2 e 2 

mtn  - m C k. ---+- 

m 

e 
- - -  

' m  2 m  2 

Let us consider the case for which the linear system is the optimum filter at a noise 
level ko. The system function is then 

and the slope of the normalized e r ro r  versus k becomes 

14 



- 
2 m 

If we compare (12) with the slope of the optimum normalized e r ro r  curve at  point ko, 
i t  is easy to verify the fact that 

Thus, the normalized e r r o r  of the filter designed to be optimum at noise level ko is 
obtained simply by drawing the tangent to the curve of normalized e r ror  p (k) at point 

opt 
The fact that p(k) is a concave function of k (Appendix B) ensures that the normalized 

kO’ 
e r ro r  for this filter will  be larger than optimum for all k # ko. Furthermore, since all 
tangents to p(k) intersect the p(k) axis between zero and one, we see  that for any linear 
filter the distortion in the absence of noise is always larger than zero and it is equal to 
zero only if  ko = 0. 

distortion of the message in the absence of noise is accepted. 

Therefore we cannot separate the signal from the noise unless some 

b. Output Noise-to-Signal Ratio of a Linear Fil ter 

We have seen that the output noise-to-signal ratio for a filter, whether or  not it is 
optimum in the mean-square sense, is given by rout = (l/pmy) - 1. For  a linear fi l ter  

2 2  
we write, as before, y = m t n and we have, furthermore, my = mml and y = m t nl .  1 1  1 
Therefore we have 

2 
- - -  

2 - -  

2 We showed (Eq. 11) that n1 = Ck, in which C is a constant related to the system function 
and the noise spectrum. 
the form 

Thus the output noise-to-signal ratio for a linear filter takes 

Therefore, rn,,+ is a linear function of k, and we note that the output noise-to-signal -- V I 1  

ratio for k = 0 is rout(0) = (m - 1, which depends only on the filter and the 
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message spectrum. It can be verified easily that if the filter is optimum at noise level 

(k) a t  then its output noise-to-signal ratio versus k for  k # k is the tangent to r 
(k) is a concave function, such a nonoptimum filter wi l l  give an output 

ko' 0 opt 
k = k 

noise-to-signal ratio larger than optimum for k # ko. 

Since r 
0' opt 

2 . 3  EXAMPLE 

To illustrate the various points discussed, we consider 

E202 
ip (0) = - D2k i p m m ( 4  = 
nn 1 t w  2 (1tw2)(4+w2)' 

s 2 (a) dw = ZIT, and D is found by writing where E is chosen s o  that Imm 

2 for k = 1; this gives E2 = 6 and D = 2. 

Bnn(w) do = 2rr 2 

1 .o 

0.8 

0.6 

0.4 

0.2 

0 

/ OPTIMUM A T T E N U A T G  / OPTIMUM ATTENUATOR 
/ 

/ 

- 
1 2 3 4 k  

Fig. 5. Normalized e r ro r  of optimum and nonoptimum linear 
filters versus noise level. 

Of the various quantities defined, only the normalized e r ro r  requires computation. 
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0.5 

0 
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(4 

- 

I I I ,  

Fig. 6. (a) Message and noise power spectra. (b) Performance index 
of the optimum linear filter. 

The computation of this definite integral is carried out by the use of the tables of Newton, 
Gould, and K a i ~ e r . ~  Our results a r e  summarized. 

Optimum filter 

Normalized e r ro r  

Performance index 
3(l+k) 

3k 
Output noise-to-signal ratio r(k) = 

2-+3-2k 

Nois e- to-signal ratio 
performance 

3 -- - out 
rin 2-+3-2k 
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Fig. 7. 

1 

0.75 

0.5 

I I I I 
1 2 3 4 

L 

(4 

2: 1 

NON OPTIMUM 

t 
1 2 3 4 k 

(a) Noise-to-signal ratio performance of the optimum filter. 
(b) Output noise-to-signal ratios. 

Nonoptimum filter (optimum for k = 1) 

3 P ( W  = 128 (9kf7) 

r(k) = 0. 54k t 0. 06 

Normalized error  

Output noise-to-signal ratio 

These results a r e  represented graphically in Figs. 5, 6, and 7 .  



111. OPTIMUM NONLINEAR NO-MEMORY FILTER 

In this section we consider the problem of finding the characteristic of the optimum 
iviosi of the nonlinear no-memory filter, and examine some properties of such fiiters. 

results presented here a r e  not new and a r e  generally mentioned in connection with the 
8 theory of estimation. (See, for  instance, Blackwell and Girshick. ) We present them 

here for the sake of completeness and clarity, and we shall draw on them later in our 
discussion of the performance of nonlinear no-memory filters. 

3 . 1  EXPRESSION FOR THE OPTIMUM NONLINEAR NO-MEMORY FILTER 

The filtering operation considered and the notation used a r e  shown in Fig. 8. We 
call W (e) the error-weighting function, and w e  wish to find g(x), which minimizes the 

INWT i (t) NONLINEAR OUTPUT g (x) 

AMPLITUDE FILTER 
RANDOM ERROR e 

VARIABLE x 

N O  - MEMORY 

WEIGHT -(e) -+-'-- AVERAGE Fig. 8. Illustrating notation. 

nFqlRFD QlJTPllT d (t! 
AMPLITUDE R A N W M  i- --- VARIABLE v 

average weighted error ,  E[W(e)] 5 W(e). We write 

Since the filter characteristic to be found, g(x), is only a function of the input ampli- 
tude, x, it is evident that i f  we choose g(x) such that for each x the integral in the 
bracket of Eq. 13 is minimum, then W(e) w i l l  be minimum. Hence, we wish to find 
g(x) such that it minimizes 

where W (e) is the average weighted error,  given that the input is x. 
g(x) is found by equating to zero the variation of Wx(e) with respect to g(x). 

The minimizing 
X 

and this should hold for any 6g(x). 
If we let BW(e)/ag = - dW(e)/de = -f(e), then g(x) is determined by solving 

Sf[v-g(x)] pd,i(v/x) dv = 0. (14) 

Once the conditional probability density, pdIi(v/x), is known for all x, Eq. 14 allows 
us to find formally the filter g(x) corresponding to an arbitrary criterion W(e). In some 
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cases a more explicit relation for  g(x) can be obtained. 

illustration and later use. 
We consider five cri teria for 

a. Mean Absolute Value of the Error  Criterion 

and, hence, 

and Eq. 14 becomes 

or  

Hence, g(x) is the median of the conditional probability density of the desired output, 
given the input. This criterion was considered recently in detail by Bluestein and 
Schwarz in connection with the problem of signal quantization. It has the interesting 
property that i f  the desired output d(t) is quantized, the optimum output is quantized 
at the same levels. 

2 

b. Mean-Square Er ro r  Criterion 

Since 

and f(e) = 2e, 2 W(e) = e 

we write Eq. 14 

n 

We have the classical result that the optimum filter is now given by the mean of the 
conditional probability density. 
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c. Mean Fourth Power of the Error Criterion 

4 W(e) = e 

and now 

3 

which for Eq. 14 leads to 

f(e) = 4e , 

or 

s[v3-3v 2 g(x)t3vg 2 (x)-g 3 (x)] pdIi(v/x) dv = 0. 

Let us  define a symbol for the nth moment of the conditional probability density as 

Then we  have 
- - 

3 - 2  2 3 g (x) - 3dxg (x) t 3dxg(x) - dx = 0. 

The optimum filter characteristic is found as a root of this cubic equation (15) in g(x) 
which involves only the moments of the conditional probability density. It is a simple 
matter to show that Eq. 15 has only one real root. For  this, consider f[g(x)] the 
derivative of the left-hand s ide  of Eq. 15 with respect to g(x). 

- 
2 

f[g(x)] = 3g2(x) - 6dxg(x) + 3dx. 

Here, l[g(x)] has no real roots, since the variance of the conditional probability density 

v:x = dx - dx 

root. 

satisfied i f  the third central moment of pdli(v/x) is zero: if  such is the case, the condi- 
tional mean wi l l  give the optimum mean fourth power of the e r r o r  filter. 

- 
is always positive. This, in turn, implies that Eq. 15 has only one real 

- 3  

2 -2 

Note that i f  we take g(x) = <, then Eq. 15 can be written as (v-dx) = 0 and will  be 

le1 < A  

le1 > A  
d. Error Criterion Characterized by W(e) = 

This criterion does not penalize e r ro r  smaller than and counts with equal weight 
The average weighted e r r o r  w(e) is, therefore, the proba- all e r ro r s  larger than bl. 

bility that the e r r o r  is larger than [AI, and the optimum filter minimizes this probability. 
For this criterion we  have 
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dW(e) 
f(e) = - = u(e-A) - u(etA), de 

in which u( ) denotes a unit impulse. Equation 15 becomes 

s{u[v-g(x)-A] - u[v-g(x)tAfi pdIi(v/x) dv = 0 

o r  

If for  a given x w e  use p(v) instead of P,/~(v/x), then the constant C = g(x) has to be 
such that 

p(C-A) = p(CtA). (16) 

This relation may have several solutions. The physical situation is clear: We wish to 
encompass the largest total probability between the points C - A and C t A, and rela- 
tion (1 6 )  corresponds to stationary values of the probability in an interval of length 2A 

when the conditional probability density is continuous. Note that i f  the conditional pro- 
bability density is even, continuous, and has its only peak at the mean, then the condi- 
tional mean gives the optimum filter. 

e. E r ro r  Criterion Characterized by W(e) = cosh e-1 

We consider this criterion for illustration purposes and obtain 

f(e) = sinh e. 

For  Eq. 14 we now have 

1 sinh [v-g(x)] pdIi(v/x) dv = 0. 

Expanding the hyperbolic sine, we have 

cosh [g(x)] 1 sinh v pd / i(v/x) dv - sinh [g(x)] 1 cosh v P,/~(V/X) dv = 0, 

which yields 

sinh v pdii(v/x) dv 

1 cosh v pd i(v/x) dv 
tanh [glx)] = 

/ 
Let us designate Px(jt) the characteristic function of the conditional probability 

density 
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If P ijt) is analytic in the compiex s piane is = Q + j t j  out io points 5: = *i, then we can 
write 

X 

We can note here  too that if  pdIi(v/x) is even around the conditional mean vo = dx, 

For  easy comparison w e  give in Fig. 9 a graph of the various error-weighting func- 
From a practical viewpoint. the absolute value of the e r r o r  criterion 

- 
then we satisfy Eq. 17 by taking g(x) = dx, and this is then the unique solution. 

tions considered. 
and criterion d a re  of greatest interest after the mean-square criterion. 

Thus we have illustrated how the optimum filter for non mean-square criteria, as 
well a s  for the mean-square criterion, can be found for nonlinear no-memory filters. 
This optimum filter is sometimes expressed only in terms of moments of the conditional 
probability density. 

In any case, the only information required is the conditional probability density for 
the desired output, given the input. 
case of filters with memory, but the conditional probability density then depends on the 
past of the input. Only for filters without memory, however, can the conditional prob- 
ability density be easily obtained. 

The expressions obtained are, in fact, valid for  the 

3.2 UMQUENESS OF THE OPTIMUM FILTER 

A sufficient condition to ensure uniqueness of the solution of Eq. 14, and hence a 
unique optimum filter, is to require that W(e), the error-weighting function, be convex. 

If W(e) is convex, then f(e) = de is a monotonically increasing function of e. 
dW(e) 

Consider Fig. 10, which illustrates this case. If f(v-g(x)] is a monotonically 

U!/ D 

-2 - 1  0 

Fig. 9. Error-weighting functions considered. 
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Fig. 10. Illustration of the conditions for  uniqueness of the optimum filter. 

increasing function of v, then both 

and 

a r e  monotonically decreasing functions of v1 and, therefore, of -g(x). Hence, 

/r+m 

is a monotonically increasing function of g(x), and Eq. 14 has only one solution. This 
result holds without any restriction on the conditional probability density, P, /~(V/X).  

3 . 3  EQUIVALENCE OF MEAN-SQUARE AND NON MEAN-SQUARE FILTERING 

For  a wide class of e r ro r  criteria and some types of conditional probability densities, 
9 Sherman has established an important property on the equivalence of mean-square f i l -  

tering with non mean-square filtering. 

In our notation his result takes the following form: If the error-weighting function is 
of the form 

0 S W(e) = W(-e) 

and 

0 S e l  S eZ - W(e,) S W(e,) 

and i f  pdji(v/x) is even about v = vo, does not contain any impulses, and is monotonically 
increasing for v < v 
v = v as  an estimate. 

then the minimum average weighted e r ro r  is obtained by taking * OD 

0 
This result leads to the conclusion that whenever the input and the desired output a r e  
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Gaussian, and, therefore, pdIi(v/x) is Gaussian, then the best filter is the same for 
any member of the class of cri teria stated. 
square e r r o r  criterion, it is linear for any of the other criteria. 

Sherman's resul t  applies to conditional probability densities that are not Gaussian. 

considered previously lead to the same filter when pdIi(v/x) is Gaussian. It is possible, 
in fact, to relax Sherman's requirements fo r  some e r ro r  criteria. 

Since the best filter is linear for the mean- 
Note, however, that 

Without calling upon the results of Sherman, it is simple to see that the five cri teria 

Consider again Eq, 14. In order to determine the optimum filter, we have to find 
a constant g(x) such that (14) is satisfied for the specific value of the input considered. 

dW(e1 . -  
Let f(e) =de be an odd function of e, non-negative for e 3 0. Then if  P,/~(v/x) 

is even about v = v 
tion, then the conditional mean w i l l  correspond to the minimum of the average weighted 
e r ro r  for all cri teria satisfying the conditions given above. To ensure a unique solution 
to Eq. 14, further conditions are needed, either on the error-weighting function W(e) or 
on the conditional probability density, pdIi(v/x). 

g(x) = vo is clearly a solution of Eq. 14. If we have a unique solu- 
0' 

Fig. 11. Conditional probability density for  which the non mean-square 
filter is the same as the mean-square filter. 

One such sufficient condition on the conditional probability density is to require that 
pdli(v/x) be monotonically increasing for v < v 
this is sufficient can be seen by considering the graph for such a case given in Fig. 11. 
It is seen that Eq. 14 will  not be satisfied by any g(x) # vo. 

We have stated that a convex error-weighting function W(e) will  ensure a 
unique solution of Eq. 14 for any conditional probability density. W e  have the 
following result: If the conditional probability density pdIi(v/x) 
v = v then g(x) = vo is the optimum estimate for all error-weighting functions 
that a r e  even and convex. 

and this is Sherman's result. That 
0' 

is even about 

0' 

Some of the e r ror  cri teria considered earlier, which do not satisfy the convexity 
requirement, wi l l  lead to nonunique optimum filters for some conditional probability 
densities. 
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IV. NO SEPARATION BY A NONLINEAR NO-MEMORY FILTER 

We consider in this section the classes of message and noise for which the optimum 
nonlinear no-memory filter reduces to an attenuator. 
that in those cases the message and the noise cannot be separated by a nonlinear no- 
memory filter. In this discussion, the major emphasis wi l l  be given to filtering in the 
mean-square sense, but the results on the equivalence of mean-square and non mean- 
square filtering given in Section I11 wil l  allow some extension to non mean-square f i l -  

tering. Since the input i(t) is the sum of the message m(t) and the noise n(t), which 
a r e  statistically independent, and since the desired output d(t) is the message m(t), we 
have 

From our point of view we say 

Equation 19 is the expression for  the conditional probability density that we shall use in 
our discussion. 

4 . 1  THE OPTIMUM NONLINEAR NO-MEMORY FILTER IN THE MEAN-SQUARE 
SENSE REDUCED TO AN ATTENUATOR 

The optimum mean-square filter is given by the conditional mean 

which, with the use of Eq. 19, can be written 
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Equation 21 can be written 

(4 

q(x) 
g(x) =-. (22) 

We shall now express r(x) and g(x) in terms of the characteristic functions Pn(t) and 
Pm(t). W e  use the definitions 

P(t) = J p(v) ejb dv. 

Writing r(x) in terms of Pm(t) and Pn(t), w e  obtain 

l and similarly for q(x) we have 

~ 

Hence, 

Equation 23 is the expression that w e  need for our discussion. 
g(x) = ax t b, an attenuator, then Eq. 22 becomes 

If the optimum filter is 

(ax+b) q(x) = r(x). (24) 

By the use of Eq. 23 we can equate the Fourier transforms of Eq. 24 and, in terms 
of characteristic functions, w e  write 

o r  
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This linear differential equation (25) relating the characteristic functions of the message 
and the noise w a s  obtained by Balakrishnan" who used a different derivation. The solu- 

tion of (25) is 

If Pn(t) is given, Eq. 26 establishes the corresponding Pm(t) such that the filter 
(t) is a characteristic function, it is necessary that m 

This condition can be shown by using the following pro- 
g(x) = ax + b is optimum. 
a/(l-a) 2 0; hence, 0 s a 6 1. 

perties of characteristic functions. 

If P 

P(0) = 1 

IP(t)( 1 all t } (27) 
* 

P(-t) = P (t) 
* 

in which P (t) is the complex conjugate of P(t). 
We proceed with our discussion of Eq. 26 by looking for the classes of messages 

and noises which satisfy this equation for any value of the noise level. 
is changed, we have 

If the noise level 

pn(v) - 1/c Pn(V/C) 

in which c 5 0. 

We assume that Eq. 26 is satisfied for a specific noise, and for c = 1 we have 

a b with kl =- 2 0  and bl =- 1 - a  1 - a '  
If the noise level is changed, the message stays unchanged, and the optimum filter 

is still of the form gl(x) = alx + bl, then we have 

Hence, 

k2 
k l  Q2. in which k =- 2 0 and Q = I, - 

We see  that if  the filter is linear for any value of c, then for any c > 0 there is a 
k and an 1 such that Eq. 29 holds. If Eq. 29 defines a class of noise characteristic 
functions, we see  by Eq. 28 that the message characteristic function Pm(tl) belongs 
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to the same class. 
We show in Appendix C that all characteristic functions that satisfy Eq. 29 belong 

to stable distribution functions. 
any a l  > 0, bl, a2 > 0, b2 there is a > 0 and b such that we  have 

A distribution function F(x) is of a stable type if ,  for 

F(alxtbl)* F(a2x+b2) = F(axtb), 

where the * indicates composition. Another concise definition is: A type of distribu- 
tion is stable i f  it contains all of the compositions of the distributions belonging to it. 

Distributions of a stable type have characteristic functions given by 

P(t) = exdjyt - dltIa[l+j6sgn t w(t ,  a)D, 

in which 

- 1 6 6 C l  O c a 6 2  

d 2 O  y real  

if  a 3 1  
o(t, a)  = 

Itl if  a = l  

Only a few of the corresponding probability densities a r e  known. 
the Gaussian probability density 

For  a = 2 we have 

For  a = 1 and 6 = 0, w e  have the Cauchy probability density 

1 d 
p(x) = -  7 2  d t (x-y)" 

Gnedenko and Kolmogorov" give the probability density for a = 1/2, 6 = 1, y = 0, and 
d = 1. 

X C O  

P(X) = 

Therefore, the mathematical derivations of this section lead to the following resul ts .  
(i) Whenever message and noise have characteristic functions that a r e  related 

by Eq. 26, a linear filter of the form g(x) = ax  t b is optimum. 
(ii) If both message and noise have a characteristic function given by Eq. 30, 

in which a and 6 a r e  the same for both message and noise, then the optimum 
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mean-square, no-memory filter is linear, independently of the nois e level. 

4.2 DISCUSSION OF RESULTS 

We recall that we considered the optimum attenuator as a reference system giving 
no separation of the message from the noise and that we defined a performance index 
as the ratio of the mean-square e r ro r  of an arbitrary filter to the mean-square e r ro r  
of the optimum attenuator. We discuss now, in this light, the cases for which the opti- 
mum nonlinear no-memory filter reduces to an attenuator, at least at some noise level. 

a. No Separation at  Any Noise Level 

In section 4. 1 we have the result that no separation at  any noise level w i l l  be pos- 
sible i f  both message and noise have characteristic functions of a stable type given by 
Eq. 30. This property of linearity of the optimum mean-square filter is commonly 
associated only with Gaussian message and Gaussian noise. 
the Gaussian probability distribution is the only stable distribution with a finite vari- 
ance, it  will be met in most physically motivated problems. Similarly, since the vari- 
ance of all other stable distributions is infinite, the concept of an optimum mean-square 
filter has no meaning for them. It still makes sense, however, to use the conditional 
mean of the message, given the input as  an estimate of the present value of the message. 

(By referring to Eq. 19, it is easy to see  that whether or not the variance (or even the 
mean) of the message and the noise exists, the conditional mean will exist.) 

The reason is that, since 

If the conditional mean is used as  an estimate, the consideration of the noise level, 
To develop which is no longer directly related to the noise variance, is still relevant. 

further the similarities between all stable distributions and the Gaussian distribution, 
we give some interesting properties of stable distributions established by Gnedenko and 
Kolmogorov. 11 

Stable distributions a r e  closely tied to the limit distributions of normalized sums. 
Consider the random variables, ck, which a r e  independent and have the same distribu- 
tion function F(x). Consider the normalized sum 

The distribution functions of sums (31) may converge to a limit V(x) for  suitably chosen 
constants An and Bn. The following theorem has been established. 

sums (31) of independent and identically distributed summands, it is necessary and 
sufficient that it be stable. 

12 

THEOREM: In order that the distribution function V(x) be a limit distribution for 

If the distribution functions of sums (31) converge to a distribution function V(x) 
as  n - 0 0 ,  then w e  say that F(x), the distribution function of each of the summands, is 
attracted to V(x). The totality of distribution functions attracted to V(x) is called the 
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domain of attraction of the distribution function V(x). 
domains of attraction. An important feature is that although the Gaussian distribution 
attracts a wide class of distributions, the domains of attraction of other stable d i s t r i -  

butions consist only of those distributions whose character recalls the character of the 
attracting distribution. More specifically, all distributions with a finite variance wi l l  

be attracted to the Gaussian distribution. 
F o r  other stable distributions w e  have, for instance, the result of Gnedenko and 

Kolmogorov, l3  given here for illustration. We consider 

Only stable distributions have 

in which a > 0, and a is the characteristic exponent of the stable distribution V(x). Note 
that a specific choice of Bn in the sum (31) w a s  made to obtain (32). 
probability distribution function of any of the 6 and the stable l aw V(x) with character- 
istic exponent a, 0 < a < 2, is the limit distribution in (32), then it is necessary and 
sufficient that 

If F(x) is the 

x > 0, a 1 1 - [c2a + a (x)]- 2 x  a I 
in which the functions al(x) and a2(x) satisfy the conditions 

lim a (x) = lim a (x) = 0. 2 
X-+m 

1 x0-m 

b. No Separation at Some Finite and Nonzero Noise Level 

We have seen that whenever the characteristic function of the message and the noise 
are related by 

in which c is a positive constant and 0 C a C 1, then the optimum no-memory filter 
reduces to an attenuator. 
tion wi l l  occur only for a specific noise level related to the value of the constant c. 
Before discussing these special cases w e  shall, for the sake of contrast, present some 
results about the performance index of linear systems with memory. 

If Eq. 29  is not satisfied at the same time, then this reduc- 

F o r  linear systems w e  have seen that no separation is achieved whenever 
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in which k is the noise level, and we know that some separation will be obtained if  Eq. 3 4  

is not satisfied. 
performance index goes to one at  zero noise level o r  at a very large noise level. 
two types of behavior a r e  possible for  optimum linear systems: 

We have seen, too, that for any message and noise characteristics the 
Hence, 

(i) Equation 3 4  is satisfied and the performance index is equal to one at all noise 
levels. 

(ii) Equation 3 4  is not satisfied and the performance index is equal to one for k = 0 

o r  k - QJ. 

A third type of behavior is possible for nonlinear no-memory filters. If Eq. 33  is 
satisfied but Eq. 2 9  is not, then the performance index w i l l  be equal to one at some 
finite, nonzero noise level. We shall, however, get separation of the message from 
the noise at other noise levels. 
the following two cases. 
CASE 1 

We discuss this point further by considering separately 

The message and the noise have the same characteristic function; hence, Eq. 33 
is satisfied for c = 1, b = 0. 

No separation will be possible for a noise level equal to 1, and the optimum no- 
memory mean-square filter wi l l  then be an attenuator g(x) = x/2. Separation wi l l  be 
possible, however, a t  other noise levels, and i t  is clear that the behavior at noise level 
k will  be closely related to the behavior at noise level l/k. 
performance index q(k) is indeed the same at these two noise levels, that is, q(k) = q(l/k). 
To show this we make use of the following properties of the optimum nonlinear no- 
memory filter. 

We shall prove that the 

(a) If both message and noise a r e  multiplied by a constant c, then the optimum filter - - 
2 2  changes from g(x) to cg(x/c), and the e r ro r  goes from e2 to c e , or, in tabular form, 

Message 

Pm (VI 

Nois e Fil ter E r ro r  

PnW g (x) e 
- 

2 

- 
2 2  c e  

This property can be easily established by direct substitution in the expressions for the 
optimum mean-square filter and for the resulting error .  

filter changes from g(x) to x - g(x), and the e r r o r  e' stays the same. 
we have 

(b) If the characteristics of the message and the noise a r e  interchanged, then the - 
In tabular form 
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14 

Now w e  consider the filtering of a signal consisting of a message with probability 
This property w a s  established by Schetzen. 

density p!v] added to noise with a probability density that is either -p(v/c) 1 o r  cp(cv). c - - 
2 

2 2 
e‘ l + k  n 

m m 
Here, if  p 

We recall that the performance index is q(k) = 

we assume that the means of both message and noise a r e  zero. 

- , in which k ==, and thus 

(v) = p(v) m 
and pn(v) =,p(v/c), 1 then k = c 2 . 

We have Table 1 from properties a and b. 

Table 1. Effect of noise level on the optimum filter. 

Noise Performance 
Message Nois e Level Fil ter E r ro r  Index 

by 
definition 

by 
property b 

bY 
property a 

L m 

Hence, we have established that q(k) = q(l/k) whenever the message and the noise 
have the same characteristic function. 
the optimum nonlinear no-memory filter reduces to an attenuator for k - 06. 

ability densities shown in Fig. 12, in which k is the noise level. 
optimum nonlinear no-memory filter is odd and for x 2 0 is given by 

Since q(0) = 1, we have q(k) - 1 as k - 06; hence, 

EXAMPLE: We consider a signal made of message and additive noise with the prob- 
For  this signal, the 

-1 1 V - J k  

Fig. 12. Example of message and noise with the 
same characteristic functions. 
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O a 9  t 
0 0.5 1 k  

0.8 

Fig. 13. Performance index for the example of Fig. 12 

X O S x S l - 6 k  

1 - 6 k S x S l  t &  

Not defined x > l t 6 k  

We have assumed that k S 1. If k > 1 the optimum filter g,(x) is given by 

1 
in which g(x) is the optimum filter for the noise level k l  = 

normalized mean-square e r ro r  is 
c 1. The minimum 

e 2 = k ( l - ~ )  dk k c l ,  

and the performance index becomes 

q(k) = (ltk) (1-$) k S 1. 

F o r  k > 1, q(k) = q(l/k). 
given in Fig. 13. 
CASE 2 

The performance index as a function of the noise level is 

The message and the noise have different characteristic functions, but Eq. 33 is 
satisfied. 

There a re  numerous such cases, both discrete and continuous, for which no separa- 
tion wi l l  occur. 

(a) We consider the Poisson distribution as a specific example of discrete message 
and discrete noise. Let the message have the distribution 

m 

and, similarly, for the noise the distribution is 
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n -A 
P n (x=k) =&e k! 

0.6 4% 

0.4 

0.2 

Then the input signal has the distribution 

p,(x = k) X 
p, (x = k) A 

- 

f T  I I I - 
( 

I I Y 

I 1 x I 

I - 

Ak -A (t) = exp[k(ejt-l)l Pmtn(x=k) =- e k! 

in which A = Am t An. 

Pmtn 

Fig. 14. Poisson distributions for which the filter is linear. 

Since Eq. 33 is satisfied, the optimum nonlinear no-memory filter is an attenuator 
g(x) = ax, and the attenuation constant a is given by 

The probability distribution of the message and the noise, however, can be quite dif- 
ferent. For example, we take Am = 2 and kn = 1/2; then, g(x) = 0. 8 x. The graphs 
for the probability densities of the message and the noise, given in Fig. 14, show them 
to be quite different. Note that both message and noise have Poisson distributions, but 
that changing the value of A here brings a change in the shape of the distribution func- 
tions and, hence, is not equivalent to a change of level. 

(b) For continuous distributions, a noteworthy class of messages and noises for 
which there is no separation at some noise level is characterized by a probability den- 
sity of the r type for which the characteristic function is given by 

in which q is a positive constant. 
density 

To this class belong the exponential probability 
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and the probability density 

2 
Fo r  these probability densities it is easy to show that the mean m and the variance u 
a r e  given by 

m = cq 

2 2  
u = c q .  

Assume that the characteristic functions of the message and the noise a r e  given by 

--n 

Then Eq. 33 in the form Pm(t) = [Pn(cnt)]a/l-a wi l l  be satisfied whenever c = c m n’ 
or, in terms of the noise level, whenever 

For  example, w e  consider 

The optimum nonlinear no-memory filter g(x), when c is used as a parameter, is given 

by 

1 in which p = 1 - -. 
Whenever c = 1 o r  k = 2, the optimum filter reduces to an attenuator, as illustrated 

graphically in Fig. 15, which gives g(x) for k = 1/2, 2, and 8. 

C 

c. No Separation at Some Noise Level and Infinitely Divisible Distributions 

Cases 1 and 2 have the common characteristic that both the message and the noise 
can be considered as the sum of n1 and n 
probability distribution. 

independent random variables with the same 

If q and 5 a r e  the amplitude random variables of message and 
2 
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Fig. 15. Fil ter for message and noise of Eqs. 35. 

noise and n1,n2 = 1,2, .  . . , then 

n 

rl= 2 'mk 
k = l  

n 

5 = f snj 
j = l  

in which all  of the em and En a r e  independent random variables, each associated with 
the same characteristic function P(t). It is clear that we have 

and, therefore, 

which is a special case of Eq. 33. 
acteristic functions for which Eq. 33 is satisfied. 
of Eq. 33 is then rational. 
can be found by considering infinitely divisible distributions. 

This fact allows us to form a great number of char- 
Note that the exponent a/(l-a) = nl/n2 

Cases for which a/(l-a) is not constrained to be rational 
15 

DEFINITION. The random variable E is infinitely divisible i f  for every number n 
n 

it can be represented as  the sum E = Z 6 of n independent identically random vari- 
j = l  nj  

ables En , En2 Enn* 
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The property of infinitely divisible distributions of interest here is given by the fol- 

THEOREM: If P(t) is the characteristic function of an infinitely divisible distribu- 
lowing theorem. 

tion, then, for every c > 0, [P(t)IC is also a characteristic function. 
If either message o r  noise has an infinitely divisible distribution, then, for any 

a/(l-a) = c > 0, we can find a noise (or message) such that the filter g(x) = ax is optimum. 
The Poisson, Cauchy, Gaussian, and I? type of distributions a r e  infinitely divisible. 

In fact, stable distributions represent a subclass of infinitely divisible distributions. 

4 . 3  EXTENSION TO NON MEAN-SQUARE FILTERING 

The results of Section I11 on the equivalence of mean-square and non mean-square 
filtering allow some extension of the results of this section to non mean-square filtering. 
These extensions a r e  based on properties of the conditional probability density, Eq. 19. 

a. No Separation at  Any Noise Level 

Among the probability densities of a stable type for which we have an explicit expres- 
sion, the Gaussian is the only one leading to a conditional probability density that is even. 
Hence, only for Gaussian message and noise can we say that the optimum filter w i l l  be 
linear for all cri teria discussed in Section 111. 

which the conditional mean is linear, we can state only that the mean-square and the 
non mean-square filters w i l l  be different. 

For  all other probability densities for 

b. No Separation at  Some Noise Level 

We shall prove, first,  that when message and noise have the same probability density, 
an attenuator is the optimum filter for most e r ro r  criteria. 

example, we show that i f  message and noise have different probability densities, the 
results obtained for mean-square filtering do not extend to non mean-square filtering. 

(i) It is easy to verify that, whenever message and noise have the same probability 
density, then the conditional probability density pm/m+n (v/x) is even about the point 

v = x/2. This allows us to say that the optimum filter wi l l  be g(x) = x/2 for all e r ror -  
weighting functions considered in Section 111, with the exception of criterion d. If some 
further property of the probability density of message and noise leads, for instance, to 
a unimodal conditional probability density, then the filter will  be g(x) = x/2 for cri-  
terion d also. 

Then, by use of a counter- 

To illustrate this point further we consider the following example. 
EXAMPLE: The probability density 

and the corresponding conditional probability density for some x a r e  shown in Fig. 16. 
For  most criteria g(x) = x/2 is the optimum filter. For criterion d (Section 111) we 
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Fig. 16. Probability density for  which the filter is not unique. 

take 

For  the value of x used in Fig. 16b, either the value g(x) = 0. 9 or g(x) = x - 0 .  9, sym- 

metric with respect to x/2, is optimum. 
optimum. 
the filter is not unique and is given by the dotted line or by the solid line in Fig. 17. 
bl 2 /xoI we have a unique filter g(x) = x/2. 

For larger  values of x, g(x) = x/2 wi l l  be 
The optimum filter characteristic g(x) is shown in Fig. 17. For  bl < lxoI 

For  

This result can be generalized and  extended to cases with memory by making use of 

>- I 
Fig. 17. Fi l ter  for the probability density of Fig. 16. 
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a result established by Schetzen.14 He showed that if for an even error-weighting 
function the characteristics of message and noise a r e  interchanged, then the optimum 
functional of the input, Xo[x(t)], goes to 

x,[x(t)] = x(t) - X0[X(t)]. 

If the characteristics of message and noise a r e  the same and the optimum functional 
is unique, then we obviously have 

If the optimum functional is not unique and i f  Xo[x(t)] is an optimum functional, then 
another one w i l l  be 

X,[X(t)] = x(t) - 3e0[x(t)]. 

(ii) For message and noise having different probability densities, we show by an 
example that i f  the optimum nonlinear mean-square filter is linear, the optimum non 
mean-square filter need not be. 

EXAMPLE: Consider the message and noise probability densities given in Fig. 18. 

- 1  -1/2 0 1 V 

Fig.  18. Example for which the mean-square filter is linear but the 
absolute value of the e r ro r  filter is nonlinear. 

This example has been chosen to give g,(x) = 2x/3 for the optimum no-memory mean- 
square filter. The optimum no-memory filter for the absolute value of the e r r o r  cr i -  
terion can be shown to be g,(x), odd, and to have for x 2 0 the expression 

1 0 ,cx c- 2 

It is clear that this second filter is nonlinear. 
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4 .4  EXTENSION TO MEAN-SQUARE FILTERING WITH MEMORY 

If w e  ROW restrict  our attention to mean-square filtering, some extension of the 

results for no-memory filters to filters with memory is possible. 
W e  f i rs t  prove that: If we let the message m(t) be characterized by some statistics 

and assume that the noise n(t) can be considered as the sum of two statistically inde- 
pendent processes 

n(t) = nl(t)  t n2(t). 

and let nl(t) and n,(t) have statistics identical to the statistics of the message, then, 
if 

x(t) = m(t) t n(t) 

is the present value of the input, the optimum mean-square filter is an attenuator with 

X (t) 
?fP [xct,] = 3. 

opt 

PROOF: The optimum mean-square filter is the conditional mean. 

x [XW] = E[m(t)/x(tl), t l  et]. opt 

Furthermore. 

Therefore, Eq. 38 holds. 
It is clear that this result generalizes for 

in which all m and n. a r e  statistically independent processes 
In such cases the optimum mean-square filter is an attenuator. 

k J 

Q. E. D. 

with identical statistics. 
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n 
xopt[x(t)l = n l  + n x(t) .  

2 

Note that this result wi l l  hold only at a specific noise level.  
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V. OTHER PROPERTIES OF NONLINEAR NO-MEMORY FILTERS 
IN THE MEAN-SQUARE SENSE 

In this section we make use of a result of Section IV to establish some further pro- 
perties of nonlinear no-memory fi l ters in the mean-square sense. 
the characterization of the message and the noise for which the optimum mean-square 
filter is of a given form. 
for the mean-square e r ro r  when the noise is either Gaussian or Poisson. We take advan- 
tage of the e r ror  expression for Gaussian noise to find the message probability density 
that gives the largest mean-square e r ro r  in an optimum nonlinear no-memory filter 
under the constraint that the average message power be constant. 
sage probability density is Gaussian. 

We first consider 

As a result of this investigation we derive simple expressions 

The resulting mes- 

The result of Section IV that we shall need is the expression for the optimum mean- 
square filter in terms of the characteristic functions of the message and the noise: 

5 . 1  OPTIMUM NONLINEAR NO-MEMORY FILTER OF A PRESCRIBED FORM 

This problem has been considered quite generally by Balakrishnan. lo For  mean- 
square filtering and no-memory filters, his approach leads to a differential equation 
relating the characteristic functions of the message and the noise whenever the filter 
g(x) has the form of a specified polynomial in x. 
case in which g(x) is a ratio of polynomials. 

as a function of the filter characteristic g(x) when the noise is Gaussian. We shall 
establish necessary relations between the input density and the filter characteristic 
when the noise is Poisson or of the r type. 

We shall extend this result to the 

Recently, Tung" obtained the probability density of the input of the optimum filter 

a. Fil ter Characteristic g(x), a Ratio of Polynomials 

We have 

k 
akx 

k= 0 

and therefore Eq. 39 becomes 
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By equating the Fourier transforms, we have 

If we know the characteristic function of the noise, this is a linear differential equation 
with variable coefficients for the characteristic function of the message. 

b. Relation between the Input Density Function and the Fil ter Characteristic for Various 

Types of Noise 

Consider again Eq. 39, which, by writing r(x) only in terms of its Fourier transform, 
may be written 

but we can write 

Since q(x) is the Fourier transform of Pn(t) P (t), we have m 

Comparison of (40) and (41) shows that if  the characteristics of message and noise a r e  
interchanged, then the characteristic of the optimum filter is changed from g(x) to 

x - g(x). 
square criteria (see Schetzen14 and Section IV). 

This is a general result holding for filters with memory, as well as non mean- 

We define F(t) as 

dPn(t) - F(t) Pn(t) 
dUt) 

o r  

Let f(x) be the Fourier transform of F(t). 
Eq. 41, we obtain 

Then by transforming the right-hand side of 
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We shall now apply Eq. 42 to various types of noise. 
equation, q(x) 
shall assume that q(x) # 0 .  

For Gaussian noise, 

Since (42j is a honiogeneous 
This solution is of no interest here, and henceforth we  0 is a solution. 

Q2 2 -- t 2 Pn(t) = e 

and 

I Hence 

2 f(x) = --Q U,(X), 

in which u (x) is the unit doublet occurring at x = 0. Equation 42 now takes the form 1 

16 This is the expression obtained by Tung. 
For Poisson noise. 

Pn(t) = e A(eJt-l) 

and 

d b  pnct,l 
= F(t) = A ejt. 

d(jt) 

Therefore 

f(x) = x u(x-1) . 
We denote by u(x-1) the unit impulse occurring at x = 1. Equation 42 now takes the form 

[g(x,-x] q(x) = -1 q(x-11, 

which can be written 
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q(xt1) - A(x) q(x) = 0. (43) 

Here, w e  let 

x A(x) = 
x + 1 - g(xt1) 

17 The solution of the difference equation (43) is well known. 
Let t(x) be an arbitrary single-valued function defined in a unit interval a =s x C a t  1. 

Then we have 

q(x) = t(a x)A(a x)A(a x t l )  . . . A(x-1) x 2 a, 

in which a x  is the point in the interval a S x a t 1  which is such that x - a x  is an integer. 

Fo r  noise of the r type, 

Hence 

and 

which can be written 

By differentiation, 

This is a differential equation for g(x) that can be written 

- 
in which 
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For  q(x) # 0, we have 

and the expression for q(x) is 

in which B is a positive constant. 

considered above, then q(x), the probability density of the input, has to  f u l f i l l  the 
following conditions : 

If g(x), the characteristic of the nonlinear filter, is given and if the noise is of a type 

(i) q(x) has to satisfy the relation obtained in terms of g(x). 
(ii) q(x) has to be a proper density function. 

- &0 has to be a characteristic function, in which we let Q(t) be the (iii) P(t) - 
characteristic function for q(x), and Pn(t) be the characteristic function for the noise. 
The third requirement comes from the fact that 

Pn(t) 

in which P (t) is the characteristic function of the message. m 

5.2 EXPRESSION FOR THE MEAN-SQUARE ERROR 

In Eq. 42 w e  can express g(x) in terms of q(x) by writing 

Whenever f(x) is a singularity function, this relation for g(x) leads to a simple expres- 
sion for the mean-square e r ro r  in terms of q(x), the input probability density. The two 
well-known, nontrivial noise characteristics that give a singularity function for f(x) a r e  
Gaussian noise and Poisson noise. W e  shall use the following expression for the mean- 
square error :  

e = m - g (x) q(x) dx, -T2 s 2  
_. 

in which m2 is the mean-square value of the message. 
without difficulty by using the known result that the e r r o r  resulting from the optimum 
mean-square filter is uncorrelated with the output of all nonlinear no-memory filters 

This expression is obtained 
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with the same input. 

a. Poisson Noise 

hk -h P(x=k) == e 

h(ejt-l) P( t )  = e 

hence 

f(x) = Xu(x-1), 

and 

q(x-1) 
q(x) 

g(x) = -h- t x. 

2 - 
q(x-l) t x] q(x) dx e2 = m2 - 1 [-i 

q(x) 

2 

- 1 x2q(x) dx t 2h xq(x-1) dx - h2 1 q ~ ( ~ ~ ”  dx . = m  s 
Since 

1 xq(x-1) dx = (xtl)q(x) dx = t h t 1 s 
and 

- 
2 2 s x2q(x) dx = m t A t h t 2 A, 

then we have 

Equation 44 holds whether o r  not the message has zero mean. 

b. Gaussian Noise 

Pn(X) =- 1 exp (-4) 
P n (t) = exp(-$), 

G U  2u 

hence 
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and 

Since 

- 
2 2  J'xz q(x) dx = m t u 

and 

s xq'(x) dx = x q ( x ) l Z  - 1 q(x) dx = -1, 

then we have 

5 . 3  MAXIMUM OF THE ERROR UNDER CONSTRAINTS FOR ADDITIVE GAUSSIAN 
NOISE 

Since we have an expression for the mean-square e r ro r  solely in terms of the input 
probability density, we can find extrema of the e r ro r  under constraint by the method 
of calculus of variations, 

We consider here a filtering problem characterized by additive Gaussian noise of 
We shall consider a power constraint on the input. 

known average power. 
in each case use the optimum nonlinear no-memory filter in the mean-square sense to 
separate the message from the noise. We now undertake to find the message probability 
density that gives an extremum of the mean-square error .  Since the message and the 
noise a r e  statistically independent, a constraint on the input average power is equivalent 
to a constraint on the message average power, and we write 

We consider all possible messages of fixed average power, and 

Other constraints a r e  

s q ( x )  dx = 1 
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q(x) 2 0 for  all x. 

We take care of the last constraint by letting 

and w e  have 

Because q(x) is the result of convolving a Gaussian probability density with the message 
probability density pm(x), we would need another constraint on q(x) to ensure that p (x) 
is positive. This constraint cannot be handled analytically, however, and we shall have 
to select among the solutions obtained for q(x) those leading to an acceptable probability 
density. In terms of y(x), using the Lagrange multiplier, we look for extrema of 

m 

J = 1 [yI2tAlx y tA2y "1, 

in which A l  and A 2  a re  Lagrange multipliers. 
Lagrange equation: 

This leads to the following Euler- 

y n  t y[Alx 2 +A2] = 0. 
(47) 

We have obtained here the Weber-Hermite differential equation. 
for solutions that are square integrable, we have the boundary conditions 

Since we are looking 

y -  o for 1x1 -a. 

The differential equation has solutions that satisfy these boundary values18 only if  it  is 
in the form 

.l 

in which n, a non-negative integer, is the eigenvalue. 
eigenfunctions a r e  the Hermite functions 

The corresponding solutions o r  

in which H (v) is the Hermite polynomial. n 
2 2 n -v 

dvn 
A n v d e  Hn(v) = (-1) e 

To put Eq. 47 in the form of Eq. 48, we let x = cu, in which c is a constant, and 
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thus obtain the solution 

yn(x) = A D (E). n c  

Here, A, an arbitrary constant, appears because the linear differential equation to be 
satisfied is an homogeneous equation. 
of the input becomes 

The solution for the amplitude probability density 

2 2 x  
= A D n ( ~ ) .  

It can be shown that the minimum of the integral I y t 2  dx that appears with a minus sign 
in the expression for the mean-square error  (Eq. 4 5 )  corresponds to the eigenvalue n = 0. 

For  n = 0 we  have 

which is, therefore, the amplitude probability of the input giving the maximum mean- 
square e r ro r .  - 

We satisfy the constraints by letting A2 = l / G  c, and c2  = r2 t m2. Therefore, 

2 
X 

1 
q(x) = exp - 

6 Jn [ 2 h A . 1 1 -  

The probability density of the message now is 

Hence, when the noise is Gaussian and additive, and the message has a fixed average 
power, the maximum mean-square error is obtained whenever the message is also 
Gaussian. In such a case, the optimum no-memory filter reduces to an attenuator and 

One might wonder if some interpretation can be given in the context to higher order  
eigenvalues and eigenfunctions (n = 1, 2, etc.) which correspond to stationary values of 
the expression for mean-square e r ror .  

2 2  

tive for all x, the corresponding message probability density p 
tive for n > 0 and does not correspond to a physical situation. 

However, although (q(x)=A Dn(x/c)), the probability density af the input, is posi- 
(x) is not strictly posi- m 
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VI. PERFECT SEPARATION BY A NONLINEAR NO-MEMORY FILTER 

In this section we establish the conditions to be satisfied by the amplitude probability 
densities of the message and the noise if the message is to be perfectly separated from 
the noise by a nonlinear no-memory filter. Since for most noises of interest this leads 
to a trivial message, we have the possibility of finding meaningful lower bounds on the 
average weighted e r ror .  
ingful s et of conditions. 

Constraints on the message a r e  proposed which lead to a mean- 

6 . 1  CONDITIONS FOR PERFECT SEPARATION 

We consider a nonlinear no-memory filter with characteristic g(x) and error-  
weighting function W(e). 
which goes to zero if  and only i f  the e r ro r  goes to zero. 

We require that W(e) be a non-negative function of the e r ro r  

We consider the expression for the average weighted e r ro r  

Then we can write 

We have pmtn(x) 2 0 for all x and Wx(e) >, 0, since W(e) 2 0 and pm/,+, (v/x) >, 0; there- 

fore, we have W(e) = 0 if and only if Wx(e) prntn(x) = 0 for all x. 

This condition requires either that Wx(e) 3 0 only for  x such that pmtn(X) = 0 o r  

that pmtn(x) # 0 only for x such that W (e) = 0. 
X 

However, W (e), which is the average weighted e r ro r  conditioned on the occurrence 
X 

of the input x, is defined only for inputs that can be obtained. 
ingful requirements a r e  p From the expression of Wx(e) of 

Eq. 50, therefore, for all x of interest (that is, such that P ~ + ~ ( X )  # O), we now require 

Hence, the only mean- 
(x) # 0 and Wx(e) = 0. m+n 

that w[v-g(x)l Pm/mtn (v/x) = 0. 

Since W[v-g(x)] is always positive except for v = g(x), we see  that Wx(e) wi l l  be 

zero i f  and  only if  pmImtn (v/x) consists of a single impulse occurring at v = g(x). 
Hence, w e  require that 

Pm/mtn(v/x) = u[v-g(x)]. (5 1) 

It is clear that g(x) has to be a single-valued function of x. In terms of pn and p m 
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Eq. 51 becomes 

The left-hand side of (52) is a function of v defined for all x such that pm+,(x) # 0, and 
condition (52) states that this function should be a single impulse occurring at v = g(x) 
for  all such x. 

Let us  take p (v) to be the probability density of continuous noise. We have n 

Pntm (XI = lpn(x-v)  pm(v) dv 

and, since p (v) contains no impulses, pmtn(v) contains no impulses. Then, i f  condition 

(52) is to be satisfied, pm(v) has to contain only impulses. and we  can make the following 
statements. 

n 

STATEMENT 1: If p (v) > 0 for all v, then condition (52) is satisfied for any x i f  

and only if pm(v) = u(v-v ). 

STATEMENT 2: If pn(v) > 0 for all v > vo, then condition (52) is satisfied for all x 
such that pmtn(x) > 0 if and only i f  p (v) = u(v-v ). Here, v and v a r e  constants. 

PROOF OF STATEMENT 2: Take p,(v) = u(v-vl); then condition (52) is obviously 
satisfied by taking g(x) = vl. Conversely, assume that p (v) = au(v-v ) + fl(v), in which m 1 
0 < a < 1 and f l  (v) > 0 for v2 C v S v then for x 3 (the larger  of vo, v ) condition (44) 

is not satisfied for any g(x). 

that Statement 2 holds if  p,(v) > 0 for all v Cvo. 

not vanish on at least one-half of the real line, the average weighted e r ro r  cannot be 
made zero except for a known message with constant amplitude. In Section 6.2 w e  

discuss constraints on the message which rule out this trivial case. These constraints 

make it possible to find the messages that lead to a minimum nonzero e r ro r  for a given 
noise. The problem of finding lower bounds on the e r r o r  is thus meaningful for a large 
variety of noise characteristics. 

n 
Here, v denotes a constant. 

0 0 

m 1 0 1 

3; 3 

Proof of Statement 1 is obtained by letting vo -Q). 

Statements 1 and 2 indicate that if  the amplitude probability density of the noise does 

It is, furthermore, obvious 

The messages that lead to zero error when the noise is not of the type considered 
above do not offer a great interest either. W e  present two other statements for the sake 
of illustration. 

STATEMENT 3: If pn(v) is such that 

for vo C v  s v l  {:: otherwise, 
Pn(V) 

then condition (52) is satisfied if and only i f  pm(v) consists of a se t  of impulses such 
that p (x-v) for any x does not overlap two adjacent impulses. Hence, we have zero 

n 
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e r r o r  i f  and only i f  adjacent impulses in the message probability density a r e  farther 

apart than (vl-vo). 

verify that i f  

This statement is easily proved. 

STATEMENT 4: If both message and noise have discrete probabilities, it  is easy to 

Pn(v) = 1 aku(v-dk) 
k 

then condition (52) wi l l  be fulfilled i f  and only i f  

f i # k  

The interpretation of these results is that we have to be able to assign one and only one 
value of the message to each region or  point on the x axis of the input amplitudes to 

obtain zero error.  

6 . 2  DISCUSSION OF CONSTRAINTS ON THE MESSAGE PROBABILITY DENSITY 

Whenever the noise probability density does not vanish on at least one-half of the 
real line the average weighted e r ro r  in a nonlinear no-memory filter can be made zero 
only i f  the message probability density is pm(v) = u(v-v ), and, hence, the message has 
a known constant value. 
ability density which have physical meaning and rule out such a trivial case. Our pur- 
pose is to define a se t  of conditions under which there is a lower bound on the e r ro r  in 
filtering. 

0 
We wish to discuss here some constraints on the message prob- 

2 We consider first a message with a constant average power (say, equal to M ). This 

constraint is clearly not sufficient here, and to rule out p 
require, also, that the mean value of the message be zero. This second condition wi l l  

be satisfied i f  w e  consider messages of fixed average power which have an even prob- 
ability density. Let us assume further that the noise probability density pn(v) is an even 
function of v and is nonzero for all values of v. 

These conditions rule out the possibility of zero average weighted error .  A s  we shall 

(v) = u(v-M), we have to m 

now show, however, by the use of a specific message satisfying the conditions stated, 
the average weighted e r ro r  can still be made arbitrarily small, and hence no useful 
lower bound on the e r ro r  can be obtained. 

to satisfy the average-power constraint we require that 2aA2 = M . 

We shall show that, for most noises, the average weighted e r ro r  W(e) can be made 
arbitrarily small for the specific message defined above. To show this we consider 

We consider the probability density of Fig. 19 for the message, and, furthermore, 

We consider an error-weighting function W(e) that is even and such that W(0) = 0. 

2 
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-A  0 A V 

Fig. 19. Probability density considered. 

the expression for the average weighted error  for a nonoptimum filter g(x) g-ren by 
Eq. 49, which, since p mtn/m (x/v) = pn(x-v), w e  write 

For  the message considered, w e  have 

(VI = (1-2a) u(v) t au(v-A) t au(vtA). Pm 

which leads to 

W(e) = a lW[A-g(x)] p,(x-A) dx t a 1 W[-A-g(x)] pn(xtA) dx 

We now shall consider W(e) as A - 0 0  and the message power constraint is satisfied. 
If we can find some filter g(x) such that W(e) - 0 as A - Q), then it is clear that i f  the 
optimum filter g This procedure, 

which avoids the use of an explicit expression for g 

tions on the behavior of pn(v) at v -Q), which a r e  met for most e r ro r  criteria and noises 
of interest. 

- 
- 

(x) is used in each case, then W(e) - 0 as A -00. 
opt 

(x), will  yield necessary condi- 
opt 

Consider the nonoptimum filter characteristic 

A x < -- 2 

A 
2 x>- .  

Then w e  have 
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We now make use of the even character of W(e) and pn(x) and of the property W(0) = 0 

to w r i t e  

2 2  By a simple change of variable in the integrals and by using a = M /2A , we write 

3A/2 
W(A) pn(x) dx + M2 lim W(e) = lim - 

A-06 - A-oo [A2 'A/2 

By considering only the principle terms, 
- 

Under most circumstances the limit on the right-hand side will go to zero. More pre- 

cisely, i f  the noise has a finite variance, then we can use the Tchebycheff inequality 
in the form 

and w e  have 
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2 
lim W(e) S lim W(2A) 2M2u2 + W(A)- n 
A-a, A-00 9A4 A2 * 

80. 

- 
If for any E: > 0, the error-weighting function is such that W(e) S te2, then lim W(e) 6 a, 
where u denotes any arbitrarily small  number. 

2 For  mean-square filtering (W(e) = e ) it appears that a finite noise variance might 
not be sufficient to lead to an arbitrarily small e r r o r  W(e) as A - a. It is shown in 
Appendix D that a finite noise variance is in fact sufficient to give the result stated. 
This tighter result requires the use of the expression of the optimum filter gopt(x) for 
mean- square filtering. 

- 

-k - 
More generally, i f  pn(x) C EX , then i t  can be shown that lim W(e) C a if  the e r ror -  

x-a A-a 
weighting function is such that lW(e)l S €e 

infinity (e. g., Gaussian noise), then the error  will  be arbitrarily small  for any er ror -  
weighting function of algebraic type at infinity. 

We have just shown that, if  w e  consider (i) a noise with a known, even probability 
density pn(v) which does not vanish for any value of v, (ii) a message with a known 
average power but an arbitrary even probability density, and (iii) an error-weighting 
function that is even and such that W(0) = 0, then no message can be found to satisfy 
the constraints which leads to zero average weighted e r r o r  W(e), but W(e) can be made 
arbitrarily small  by taking the message probability density shown in Fig. 19 and letting 
A - 06. 

tion W(e) and the behavior on the noise probability density pn(v) for v - 00. 
which w i l l  lead to a nonzero lower bound on the e r r o r  in filtering. 

If the noise behaves exponentially at 
e'LW 

- - 

This second fact w a s  proved under some restriction on the error-weighting func- 

W e  now have to formulate an additional constraint on the message probability density 

This additional constraint is suggested by considering the message probability den- 
sity of Fig. 19 as A -00. 
infinite amplitude. 
a s  well  as its average power. 

We note that, in the limit, we have a message of possibly 
This leads us  to constrain the maximum amplitude of the message, 
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VII. MAXIMUM AND MINIMUM OF THE AVERAGE WEIGHTED 
ERROR FOR A GIVEN NONLINEAR NO-MEMORY 

FILTER UNDER CONSTRAINTS 

7. 1 CONDITIONS UNDER WHICH FILTERING IS CONSIDERED 

We consider filtering whenever the following conditions a r e  met. 

(i) The amplitude probability density of the noise is a known even function. 
(ii) The characteristic of the nonlinear no-memory filter g(x) is a known odd func- 

(iii) The message has a constant average power M2 and an amplitude less than a 
tion. 

constant L. 
(iv) The amplitude probability density of the message is even. 
(v) The error-weighting function W(e) is even. 
We wish to find the message probability density that maximizes o r  minimizes the 

average weighted e r ro r  under these conditions. 

7 . 2  MESSAGE PROBABILITY DENSITY MADE U p  OF FOUR IMPULSES AT MOST 

We show that the average weighted error will be minimized or maximized by a mes- 
sage amplitude probability density made up of four impulses at most. We consider the 
expression fo r  the average weighted e r ro r  when the message and the noise a r e  statisti- 
cally independent (Eq. 53). We can write Eq. 53 as  

i f  we let 

where f(v) is the average weighted e r ro r  corresponding to a specific value of v of the 
message amplitude and under our assumptions is a known function of v. Furthermore, 
it is simple to show, because of conditions (i), (ii), and (v), that f(v) is an even func- 
tion of v, and w e  can write 

Let us  find the message probability density that minimizes W(e) under power and 
With all conditions considered, our problem is to amplitude constraints (as stated). 

find the minimum (or maximum) of 
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under the constraints 

Jo 2pm(v) dv = 1. 

This problem is considered in Appendix E and use can be made of the results obtained 
there. 
taking 2pm(v) for 0 S v  CL to be composed of a t  most two impulses. Since pm(v) is 
an even probability density, we have established the result that w e  have to consider a 
message probability density made up of four impulses at most. 

7 .3  DETERMINATION OF THE POSITION OF THE FOUR IMPULSES THAT LEAD 

- 
We have, therefore, the fact that W(e) will  be minimized (or maximized) by 

TO A MAXIMUM OR A MINIMUM 

We consider now an even message probability density made up of four impulses. 

p,(v) =yu(v -x )  a t &--i-> l a  u(v-y) +.p(vtx)  a + L-4 l a  u(vty), (56) 

in which 

O S a S l  (57) 

x,y CL. (58) 

The power constraint becomes 

(59) 
2 2 2 ax + (1-a) y = M . 

If, without loss of generality, we take x to be less than o r  equal to y, we have, neces- 
sarily, 

O C x d M  

M C y  SL. 

We now need to determine x and y, the positions of the two impulses for v 3 0, and a, 
the parameter for the magnitude of the impulses.  

In the present situation the expression for the average weighted e r ro r  (Eq. 54) 
becomes 
- 
W(e) = af(x) + (1-a) f(y). (61) 

which is to be minimized or maximized with respect to x, y, and a under constraints 
(571, (591, and (60). 

a. General Solution 

We use the method of Lagrange multipliers to find the extrema of 
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2 2 I = a f(x) t (1-a) f(y) t aXx t (1-a) xy2 -AM , 

in which h is the Lagrange multiplier. 
We set  the three partial derivatives equal to zero. 

a1 
ax - = o - a [ f ' ( x ) t ~ ~ x ]  = o 

81 - = 0 - (1-a)[f1(y)t2Xy] = 0 
BY 

2 2  - -  a1 - 0 -f(x) - f(y) + X(x -y ) = 0. az 

We see  that whenever a # 0 and a # 1, these conditions a r e  independent of a. 
consider the cases for which a = 0 and a = 1 first. 

Fo r  a = 0, we have - = 0 and we have to solve 

Let us 

a1 
ax 

f'(y) t 2hy = 0 

2 2  f(x) - f(y) t h(x -y ) = 0. 

Let y(h), x(X) be solutions. Then the power constraint calls for y(h) = M, and, there- 
fore, 

f'(W 
X = - -  

2M ' 

and x has to be determined by the equation 

f '(W 2 2 
f(x) - f(M) - 2M (X -M ) = 0. 

Here, x = M is clearly a solution; hence, for a = 0, x = y = M we always have a sta- 
tionary value of W(e). 

Fo r  a = 1 it  is clear, by symmetry, that x = y = M corresponds also to a stationary - 
value of W(e). 

If a # 0, a # 1, our equations a r e  independent of a and we have to solve formally 
the three equations for x and y as a function of A (this is not necessarily possible), 
and then determine X to satisfy the power constraint. But, since a is still available, 
we have the alternative method of solving the three equations for x, y, and X. We know 
that for any x and y in the ranges specified there is always an a (0 S a  S 1) to satisfy 
the power constraint. We write the three equations 

f'(x) = -2kx O S x S M  (62) 

f'(y) = -2hy M S y S L  (63) 

(64) 
2 2  f(y) - f (X)  = -X(y -X ). 

Any A such that x and y a r e  in the indicated ranges is acceptable. Let us rewrite 
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Eq. 64 in the form 

A simple geometric interpretation can be given to Eqs. 62, 63, and 65 by considering 
a graph of fl(v) (Fig. 20). 

The points x ( 0  < x G M) and y (M S y G L) to be found a re  such that the two cross- 
hatched areas  a r e  equal. 
it  is clear that Eqs. 62, 63, and 65 a r e  then satisfied, and x and y correspond to a 

Since they a r e  at the intersection of fl(v) with the line -2A. 

stationary value of W(e). 
Another interpretation of Eqs. 62-64 is to note that they require f(v) to be tangent 

to the parabola h(v) = -Av t C at points x and y corresponding to a stationary value 
of W(e). Here, C denotes an arbitrary constant. This interpretation is, in fact, more 
fruitful in the discussion of extrema of W(e), as  well as  stationary values. To see  this, 
consider the expression to be minimized (Eq. 61); when, in fact, 

2 

2 f(v) = -Av t C, 

we obtain 
W(e) = a[-Ax2tC] t (1-a)[-Ay 2 tC]  = -A[ax 2 +(l-a)y 2 ] t C 

2 2 2 and, since the constraint requires that ax t (1-a)y = M , we have 

2 W(e) = -AM + C. 
2 Hence, the parabola h(v) = -Av t C is the curve corresponding to a constant value of 

W(e), the expression to be minimized. 
impulses a r e  x and y, and if we find A and C such that f(x) = -Ax t C and f(y) = -Ay2 t C, 

2 then W(e) = -AM t C. It is important to note that W(e) is then the ordinate of the para- 
2 bola h(v) = -kv t C at point v = M. 

mization) considered can be discussed in the following terms. 

In other words, i f  the positions of the two 
2 

- 

Therefore, the problem of minimization (or maxi- 

Fig. 20. Geometric interpretation of Eqs. 62, 63, and 65. 
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Fig. 21. Other interpretation of Eqs. 62-64. 

Given the curve f(v), which corresponds to the average weighted e r ro r  when the 
message has value v, find the parabola h(v) = -hv t C intersecting f(v) between 0 

2 and M and between M and L such that W(e) = -XM t C is minimum (or maximum). 
The intersecting points x and y give, then, the positions of the impulses making up 
the message probability density. 

is 

2 
- 

The situation is illustrated in Fig. 21. 
The parabola corresponding to the maximum average weighted e r ro r  W(e) max 

hl(v). 
given by h2(v), which intersects f(v) at points x = 0 and y = L. Our previous analytical 
results now become clear. 

It is tangent to f(v) at the two points of abscissae x1 and yl. The minimum is 

2 
(i) If the parabola h(v) = -hv t C is tangent to f(v) a t  points x and y, then we - 

have there a stationary value of W(e). - 
(ii) The points x = y = M always give a stationary value to W(e) when we can draw 

a parabola tangent in v = M to f(v). 

b. Cases for Which the Extrema Correspond to Points on the Boundaries 

The discussion of these cases becomes easy if  we make use of a property of the 
family of parabolas considered. We shall state this property in the form of a lemma. 

zl(v) passing through the point (v = M, zl(M) = -hM t C = G), in which G is a given 
constant. Then, if  z(v) # z (v), we have either 

2 LEMMA: Consider the family of parabolas z(v) = -hv t C and a specific parabola 
2 

1 

PROOF: Two parabolas of the family intersect, a t  most, at one point for v 2 0. 

Hence, i f  z l ( M )  = G and z(M) c G ,  then z(v) and zl(v) intersect once at  most; either 

0 S v S M o r  v 2 M; hence, z(v) is necessarily below zl(v) in one of the two regions. 
Q. E. D. 

There a re  four cases for which the minimum of W(e) occurs on a boundary. 
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- CASE 3 
x = 0, y = L corresponds to the minimum value of W(e) if the parabola hl(v) = 

+ f(Oj, which has the properties that h (9 )  = f ( O )  m d  h (L) = f(T.!; is such ,2 1 1 
f(L) - f (O)  2 

v 
L 

that f(v) b hl(v) for 0 Cv SL. The minimum average weighted e r ro r  is then 

CASE 4 - 
x = y = M corresponds to the minimum value of W(e) if  the parabola hZ(v) = 

f'(M) 2 - (v2-M ) + f(M), tangent to f(v) at v = M, is such that f(v) 3 h2(v) for 0 S v  SL. 
The minimum average weighted e r ro r  then is 

2M 

These cases can be proved as follows. There is no other pair of points x and y satis- 
Such a pair fying the constraints which would lead to a smaller average weighted error .  

of points would have to be on a parabola of the form h(v) = -Av- + C such that h(M) < hl(MrI) 
or h(M) < hZ(M). 

7 

From the lemma all such parabolas will  not intersect f(v), either for 
0 S v  S M  or for M S v  S L .  
CASE 5 

x = o  M < y < L  
CASE 6 

O < x < M  y = L  
Cases 5 and 6 can be similarly discussed without difficulty. 
The discussion of the position of the impulses leading to a m ximum of the verage 

weighted e r ro r  is completely similar. 
intersect f(v) twice, for 0 < v S L and M ,< v < L, and a r e  such that h(v) 2 f(v). 0 S v S L. 

One has, then, to consider parabolas h(v). which 

It is often clear, by considering the graph of f'(v), that the minimum wi l l  occur at 
x = y = M and the maximum at x = 0, y = L. or conversely. 

For instance, if f'(v) and -2kv (any A) intersect only once for 0 S v  S L ,  it is easy 
to see  that a parabola h(v) = -Av + C tangent a t  M cannot intersect f(v) for 0 S v S L, 
and i f  a parabola h(v) intersects at x = 0, y = L, then i t  wi l l  not intersect anywhere 
else in the range. Note that if x = 0, y = L corresponds to an extremum of W(e) for 
some M (0 C M S L ) ,  then x and y will  keep this property for any M in that range. 

2 

- 

7 . 4  AVERAGE WEIGHTED ERROR FOR A GIVEN MESSAGE AMPLITUDE AT 
THE INPUT 

We establish three properties of the functions f(v), the average weighted e r r o r  when 
the message amplitude is v, since this function plays a central role in our previous dis-  

cussion. 
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a. f(v) and Its Derivative at the Origin 

From Eq. 55, we compute d f(v)/dv by interchanging the order of differentiation 
and integration; we have 

d f ( 4  
-= dv 1 W1[v-g(x)] pn(x-v) dx - 1 W[v-g(x)] ~ ' ( x - v )  dx, 

in which the prime indicates differentiation with respect to the argument. Hence, 

If W(e) is even, then Wl(e) is odd. Then, since g(x) is odd, W(-g(x)) is even and 
Wl(-g(x)) is odd. And, since pn(x) is even, pA(x) is odd. We see, therefore, that each 
of the integrals is zero, and we have 

We have stated that, i f  the line -2hv crosses fl(v) only once in the range 0 C v C L, 
then the pairs (x = 0, y = L) and (x = y = M) correspond to extrema of the average 
weighted error W(e). Now, since f'(0) = 0, we have a crossing point at v = 0. 

is continuous with continuous derivatives, then f'(v), either concave o r  convex, wi l l  
guarantee that we have only one crossing with a straight line going through the origin, 
besides the point v = 0. Hence, we have now the weaker but simpler sufficient condi- 
tion that, if  either 

If f'(v) 

d3f(v) 

dv 
2 0  OCVCL 3 

o r  

d3f(v) 

dv 
S O  O S V C L  3 

then the extrema of W(e) w i l l  occur when x and y a r e  at the extrema of their ranges, 

b. The Function f(v) When W(e) Is a Polynomial in e and g(x) Is a Polynomial in x 

If W(e) is a polynomial of the e r ro r  and the given filter g(x) is a polynomial in x, 
then f(v) is obtained simply in terms of the moments of the noise probability density. 

Let 
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and write, by a change of variable, 

f(v) = 1 W[v-g(xtv)] pn(x) dx 

and we have 

W[v-g(xtv)] = 1 ak 1 - b j ( x t v ) y .  

k j 

By expanding all terms, Eq. 68 can be written 

Since we average this expression with respect to x, we have 

S Q  

in which M is the moment of p (x) of order q. 9 n 

Since p (x) is even, all odd moments a r e  zero. 
nomial W(e) and r is the degree of the given filter g(x), then f(v) will  be a polynomial 
of degree 2nr, involving moments of pn(x) up to order 2nr. 

If 2n is the degree of the e r ro r  poly- n 

c. Expression of f(v) for Criterion d 

Using criterion d and Eq. 67,  w e  have 

Iv-g(xtv)l < A 

lv-g(xtv)/ 2 A. 
w[v-g(xtv)] = 

The condition 

can be written 

v - A < g(xtv) < v t A. 

Assume that g(x) has an inverse g-'(x); then the inequalities take the form 
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g-' (v-A) < x t v < g-l(vtA). 

From the way in which the inequalities a r e  written we assume that g(x) is an increasing 
function of x. If it is not, the two limits have to be interchanged. 

Hence, in  terms of x we have 

-1 g-l(v-A) - v < x < g (vtA) - V, 

and for this range of x, W[v-g(xtv)] = 0. NOW f(v) takes a simple form 

g-'(v-A)-v co 

f(v) = s, pn(x) dx + '!g-l(vtA)-v P n W  dx 

o r  

g-'(vtA)-v 
f(v) = 1 - pnW dx. 

l g -  (v-A) -v 

If g(x) does not have an inverse, we shall have to consider several ranges of x for each 
value of v. 

7 .5  EXAMPLES OF THE DETERMINATION OF EXTREMA OF THE AVERAGE 
WEIGHTED ERROR 

EXAMPLE 1: We consider a simple example employing the mean-square e r ro r  cr i -  
terion and Gaussian noise. Let 

then 

3 2  f(v) = [v-x ] P,(x-v) dx. s 
If w e  expand and average and use the expressions of the higher moments of the Gaussian 
probability density in terms of a , we obtain 2 

6 4  2 4 2  6 f(v) = v t v (15a2-2) t v (45a -6a t1) t 15a . 

If we take a = 1, 

6 4 2 f(v) = v  t 13v t 40v t 15 

and 

5 3 f'(v) = 6v t 52v t 8Ov. 

It is clear that f'(v) is a convex function of v for all v. This fact indicates that x = y = M 
is the position of the impulse in the message probability density leading to the minimum 
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Fig. 22. Mean-square e r ro r  for g(x) = x3 and Gaussian noise. 

mean-square e r ro r  and that x = 0, y = L corresponds to the maximum mean-square e r ror .  
Therefore, we have 

- 
6 = f(M) = M + 13M4 + 40M2 + 15 min e 

We give in Fig. 22 a graph of the numerical values L = 3 and 0 C M C 3. 

EXAMPLE 2: As an illustration of a non mean-square e r ro r  criterion, we consider 

g(x) = ax 

and criterion d, and undertake to find lower and upper bounds on the average e r ro r  under 
the general conditions of section 7. 1. Making use of Eq. 69, we have 

where f(v) is an even function. For  v 2 0 we have 

cosh (i- 1) v A O G V C -  1 - a  

A 1 - sinh- A exp [ - 6 -- l)v] v 2 - a 1 - a  

Let us  take a, the attenuation constant of the filter, as a parameter, fix the values 
of the other parameters as 
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M = 2 ,  L = 4 ,  A = O . 2 ,  

and consider the graph of f'(v) given in Fig. 23.  In Fig. 23  the portion of the curve f'(v) 
for 0 =s v s 0.2/(1-a) is convex and, therefore, i f  L s 0.2/(1-a) we shall have x = y = M 
for the minimum value of W(e) and (X = 0, y = L) for the maximum value. Since f'(v) 
for  0 s v 6 0. 2/(1-a) is very close to its tangent at v = 0, abscissa Lo (defined in Fig. 23) 

\ 
0 - 0.2 -Lo V 

1 - a  

Fig. 23.  Geometric discussion of the position of the impulses. 

w i l l  be approximately equal to 0. Z/(l-a). 
whenever L > 0. 2/(1-a) the pair (x = 0, y = L) w i l l  give W(e) min' and i f  M > 0. 2/(1-a) 

the pair (x = y = M) wi l l  give W(e)max. With the same approximation, when M < 0. 2/(1-a) 
and L > 0. 2/(1-a) the pair (x = 0, y = 0.2/(1-a) wi l l  give W(e)max. These results a r e  

Under these conditions it is easy to verify that 

Table 2. Position of the impulses for which W(e) is an extremum. 

M \  
0 

0. 2 
1 - a  

od 

\ L  

I 
0. 2 

1 - a  

Min {" = 
y = M  
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Min{ = 
y = L  

Max { = O0. 
y = -  1 - a  

Min {x = 
y = L  

x = M  

.-{y=M 



t” 

0.2 0.4 0.6 0.8 a 

Fig. 24. Average weighted e r ro r  for Example 2. 

summarized in Table 2. 

ranges in a. 
The ranges for L and M defined in Table 2 correspond to 

Since M = 2 and L = 4, w e  have 

L < -  O o 2  - a > 0 . 9 5  1 - a  

By the use of the expressions of W(e)max and W(e)min obtained previously we can w r i t e  

0.25 1 - s i n h G  exp[-4(:- I)]] + 0.75  e -O.2/a 

e 

0 S a  S 0. 95 - a 

cosh 2 c  - 1) 0. 95 S a c  1 

[ 
-0.2/a 

1 - sinh exp[ -2c - l)] O S a c 0 . 9  

ZO(l-a)(cosh a- o 2 

a 

0.9 S a < 0. 95 .-o. 2/a + .-o. 2/a 

-O*  2/a cosh -- 1 + e 0.95 < a c I I 4( 1 -a) 
a 

-0.2/a 0.25 e I 
In Fig. 24 we give a graph of these results for 0 S a S 0. 8. 

7 . 6  EXTENSIONS OF THE RESULTS 

a. Removal of the Maximum-Amplitude Constraint 

In some cases the upper and lower bounds on the average weighted e r ro r  will stay 
finite and nonzero, respectively, when L, the maximum amplitude of the message, goes 
to infinity. 
the message has an amplitude v. 

This wi l l  depend on the behavior of f(v), the average weighted e r ro r  when 

(i) Lower bound 
We note that if  f(v) > 0 for all v, then the lower bound on the average weighted e r r o r  

We can say, more exactly, that W(e)min wi l l  not be 
- 

will be larger than zero for any L. 
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smaller than fmin, the minimum value of f(v) over all v, since W(e) = af(x) t (I-a)f(x) 2 
. fmin 

to the average weighted e r ro r  for any M and any L. 

Therefore, if  f(v) > 0 for all v we a r e  sure  of finding some useful lower bound 

(ii) Upper bound 
If f(v) is bounded for  all finite v, the behavior of f(v) for v - 00 will determine 

whether o r  not some finite upper bound on the average weighted e r ro r  wi l l  exist as L -06. 
Since we are  looking for a parabola that is tangent to f(v) from above, the problem is 
to determine whether or  not we can find some parabola h(v) = -Av t C ,  with A and C 

finite, such that f(v) < h(v) for all v. It is clear that i f  f(v) < klv2 for some k l  finite, 
then such a parabola h(v), with A and C finite, can be found. If f(v) > k2v2 for any 

k2, then no finite upper bound wi l l  exist. 
2 and look at the average weighted e r ro r  as L - w .  

W(e)min is equal to f (M)  and does not depend on the maximum-amplitude constraint L. 
For  the upper bound we have W(e)max - w as L - 00, since f(v) - v 

From Example 2 (Table 2) for L -00 we have the fact that mmin wil l  be obtained 

2 

V'Q) 
For  illustration we consider Examples 1 and 

From the results of Example 1, - 
6 as v - Q). 

by taking x = 0, y -00. 
Wmin - f(0) = e-" 'Ia. By taking 

From Eq. 66 we see that i f  M2/L2 - 0 as  L -00, then 

0. 2 if M C -  
0.2 

0. 2 
1 - a '  x = y = M  if M > -  

we obtain 

0. 2 M S -  1 - a  

0.2 
1 - a '  M > -  

b. Other Constraints of the Form I F(x) p,(x) dx = F 

We have been concerned thus far in this section with an average power constraint on 
the message. 
form I F(x) pm(x) dx = F. 
only consider a message probability density made up of four impulses. 
to duplicate closely ou r  previous reasoning. 
stated in section 7 .  1, we a r e  still  looking for the positions of x and y of two impulses 
such that 

The results obtained can be easily extended to other constraints of the 
The key result is that for all constraints of this type we need 

Since we left unchanged all other conditions 
This allows us 

Wo = af(x) t (1-a) f(y) 
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is maximum o r  minimum under the constraint 

aF (x )  t (1-a) F(y) = F, 

and we require that 0 S a  S 1 and 0 S x , y  SL. - 
The curves h(v) = XF(v) t C correspond to constant values of W(e). That is, i f  x 

and y are chosen to give f(x) and f(y), and if we  select X and C such that h(x) = f(x), 

h(y) = f(y), then the corresponding average weighted e r ro r  is W(e) = X F  t C. 
- 

This is easy to see, since if f(v) = h b )  = XF(v) t C, then, for all x and y satisfying 

Now, we wish to prove that if F(v) is a continuous, monotonically increasing o r  
decreasing function of v, then, for a constraint of the form a F(x) t (1-a) F(y) = F with 
0 S x, y S L, and 0 S a S 1, there is a value vo such that F(vo) = E. Furthermore, for 

any x and y, 0 S x S vo and v S y S L, the constraint can always be satisfied by proper 
choice of a. 

PROOF: 

the constraint, we have W(e) = X F  t C. 

0 

Since 0 G a S 1, we have either F(x) S F and F(y) > F or  the converse; 
and, since F(v) is continuous, there is a v x < v < y such that F(v ) = F. 
x < v  y > v o ;  then F(x) < F and F(y) > F o r  the converse. Therefore, since 
a = [F-F(yjy[F(x)-F(y)], we have 0 S a 6 1. 

We have to 
find a curve of the family h(v) = XF(v) + C which intersects f(v) in two points x and y 
with 0 S x S vo and v S y  S L and has the smallest ordinate h(v ) = XF(v ) t C, and, 
furthermore, we  have F(vo) = F. 

The family of curves 
h(v) is here h(v) = Av t C for v 2 0, and we have vo = F. Therefore we  wish to find 
a straight line h(v) = Xv t C that intersects f(v) in two points x and y (0 ,Cx S F and 
F S y S L) and is such that h(F) = X F  t C is maximum o r  minimum. 

Now take 
0' 0 0 

0, 

Therefore, the analogy with the average power constraint is complete. 

0 0 0 

EXAMPLE: We consider the constraint 1 1x1 pm(x) dx = F. 

Stationary values of W(e) will occur i f  a line is tangent at two points to f(v). If f(v) 
is convex, then x = y = F wil l  give the minimum average weighted e r ro r  and x = 0, y = L 
will  give the maximum, and if  f(v) is concave the converse wi l l  be true. 

c.  Removal of the Requirements of an Odd Filter Characteristic and an Even Message 
Probability Density 

We found that an even noise probability density, an odd filter characteristic, and an 
even error-weighting function resulted in the function f(v) being even, which is the prop- 
erty of f(v) that we  needed in our discussion. If w e  do not restrict  f(v) to be even, then 
none of the restrictions discussed above on noise, filter, and error-weighting function 
are needed. In terms of f(v) w e  can rewrite the conditions of section 7 .  1 as follows. 

(i') The function f(v) is even. 
(ii') The message has a constant average power, M , and an amplitude less than a 

constant L. 

2 

(iii') The amplitude probability density of the message is even. 
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We wish to remove here conditions (it) and (iiil), leaving unchanged condition (ii') just 

The results a r e  modified quite simply to remove the even requirement on the mes- 
discuss ed. 

sage probability density. 
four impulses it is clear, because of the even character of conditions (it) and ( i i l ) ,  that 
the position of the four impulses stays even. The impulses at -x and tx ,  however, a r e  
no longer required to have the same area. 
tant, for i f  f(v) is even, then 

In terms of the parabolas that determine the position of the 

In fact, only the sum of their areas is impor- 

alf(x) t azf(-x) +- a3f(y) t a4f(-y) = (al+a2) f(x) t (a3+a4) f(y). 

It is clear that an even message probability density is among the solutions and that all 
solutions lead to the same average weighted error.  
take only positive values, we can also immediately use our previous results. 
new situation the function f(v) is only of interest for v 2 0, and, by assuming that it is 
even, we can discuss the problem as before. 
impulses corresponding to a negative message amplitude. 

If we do not require f(v) o r  pm(v) to be even any more, then, from Appendix E, the 
extrema of the average weighted e r ro r  can still be found for a message probability den- 
sity made up of two impulses at most. If x and y a r e  the positions of the impulses, we 
still require that 0 S 1x1 S M ,  M S lyl SL, and M, L > 0, because of the power constaint. 
The stationary values of W(e) still correspond to a parabola h(v) = -Xv t C tangent to 
f(v) in x and y, and tangency is determined by considering a graph of fl(v) and its inter- 

If the message and the noise can 
In this 

In the results we give zero a rea  to the 

2 

sections with the line hl(v) 
EXAMPLE: We take 

which lead to 

= -2Xv. Here, again, the extension is quite straightforward. 

2 
pn(v) = e-v /&, 

2 2  f(v) = (v-x ) P,(x-v) dx s 
3 f(v) = v4 - 2v t 4v2 - v t 3/4 

and 

2 f t(v) = 4v3 - 6v t 8v - 1. 

It is simple to show that f'(v) is monotonically increasing and that a line h'(v) = -2hv 
wi l l  only intersect ft(v) at one point. 
be tangent to f(v) at more than one point. 
parabola will  be below f(v). 
x = y = -M. 
Since f(-v) > f(v), the proper choice is x = y = t M  for  the lower bound and x = 0, y = -L 
for the upper bound, and the lower bound is given by f(M) independently of L. 

2 This means that a parabola h(v) = -Xv t C cannot 

The lower bound wi l l  be found by taking x = y = t M  o r  
Similarly, for the upper bound we take x = 0, y = tL o r  x = 0, y = -L. 

Furthermore, it can be shown that such a 
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VIII. LOWER BOUNDS ON THE AVERAGE WEIGHTED ERROR 
IN A NONLINEAR NO-MEMORY FILTER 

8.1 INTRODUCTION 

W e  s a w  in Section XI1 that, whenever the message and noise probability densities a r e  
known, it is possible to determine the nonlinear no-memory filter that is optimum for a 

specific e r ro r  criterion. In Section VI we discussed conditions under which the average 
weighted e r ro r  cannot be made zero and useful lower bounds exist. 
information with the results of Section VII, we shall give here lower  bounds to the aver- 
age weighted e r ro r  for specific e r ro r  criteria. 
conditions. 

(i) 

By combining this 

We consider filtering under the following 

We only know of the message that its probability density pm(v) is even, with a 
2 known variance M and p,(v) = 0 for all 1.1 > L. 

(ii) The probability density of the noise pn(v) is a known even function, nonzero for 

(iii) The error-weighting function W(e) is a known, nondecreasing function of e for 

The first problem is to find the specific message having the given characteristics 

all v and nonincreasing for v 2 0.  

e 5 0 and even. 

which leads to a minimum average weighted error .  
the average weighted e r ro r  for various error criteria. 

For this message we then consider 

8.2 OPTIMUM MESSAGE PROBABILITY DENSITY WJ3EN pn(v) AND W(e) ARE EVEN 

We a r e  looking for the specific message probability density that meets condition (i) 
and leads to the minimum average weighted error .  Conditions (ii) and (iii) can be relaxed, 
and we require only that p (v) and W(e) be known and even. This problem differs from 
that of Section VI1 in that the filter is not known and we now a r e  minimizing among the 
filters, as well as among the message probability densities. We have shown that if  the 
filter is known and odd the minimum average weighted e r ro r  is obtained when the mes- 
sage probability density is made up of 4 impulses at most. 
minimization is carried out among the filters as well we a r e  still  led to consider a mes- 
sage probability density made up of 4 impulses at most. 
which follows from symmetry considerations, that when the message probability density, 
the noise probability density, and the error-weighting function a r e  even, then the optimum 
nonlinear no-memory filter is odd. 

1 

n 

We shall show here that i f  

To show this we need the result, 

Let us assume that we know p (v), the message probability density giving the mini- 
mum average weighted error ,  and gl (x), the corresponding optimum filter. 
we can write the average weighted e r ro r  in the form 

Here, again, 

in which 
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Since g (x) and therefore fl(v) a r e  known, we can minimize among the message prob- 
ability densities, keeping fl(v) fixed. From Section VI1 we can find here a message 
probability density p2(v) made up of 4 impulses at most, and we obtain W2(e) a s  the 
resulting average weighted error .  

1 

We now can start  from p,(v), consisting of 4 impulses at most, and find the optimum 
filter g (x) and the minimum average weighted e r ror  W (e). 

2 3 
W (e), W (e), and W (e) have been successively obtained, it is clear that we have 

From the way in which -- 
1 2 3 

Since, by hypothesis, W (e) is the lowest achievable average weighted e r ro r  for this 
class of messages, i t  is necessary that we have equality in Eq. 70. But W3(e) corre- 
sponds to a message probability density made up of 4 impulses at most and, therefore, 
the minimum of W(e) w i l l  be found by considering only messages consisting of 4 impulses 
at most. 

1 

8. 3 CONDITIONS FOR WHICH THE OPTIMUM MESSAGE PROBABILITY DENSITY 
CONSISTS OF THREE IMPULSES AT MOST 

In this section we justify, on intuitive grounds, a result that we a re  not able to prove 
rigorously. 
point to illustrate more physically the result of Section VII. 

Since our argument is intuitive, it is helpful before discussing the specific 

We consider, for instance, any message that satisfies the conditions 
(i) The message changes at discrete times t = 1, 2, . . . and then takes any ampli- 

tude less than L. 
(ii) The message has  an even amplitude probability density and a known average 

power. 
Let the additive noise be white Gaussian and assume that delay in filtering is 

MESSAGE 
Y -  
M -  

t 
C 

-M - 

-Y r 

-L 1 
Fig. 25. Optimum message for additive white Gaussian noise. 
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t 
' b E S T  MESSAGE 

0 

Fig. 26. Message levels for which the distance between 
levels is maximum. 

acceptable. 
n = 1, 2, . . . to time t = n t 1 (matching the filter to the message) and then perform no- 
memory filtering to estimate the amplitude of the message in that time interval. 
s a w  in section 8.2 that the message that is most distinguishable from the noise, in the 
mean-square sense, for instance, is quantized at no more than 4 different levels. This 
situation is illustrated in Fig. 25. 

Then the best filtering operation is to integrate the input from time t = n, 

We 

We shall discuss this result in physical terms: We  showed in Section VI the quite 
intuitive result that to obtain zero e r ror  we have to be able to assign a unique value of 
the message to each value of the input. In general, the effect of the noise wi l l  be to 
smudge the amplitude probability of the message and make impossible a one-to-one cor- 
respondence between input amplitudes and message amplitudes. When we allow some 
choice among the message probability densities and w e  wish to reduce the confusion 
between the possible messages which is due to the noise, it is clear that a small number 
of amplitude levels for the message wi l l  be beneficial, 
section 8. 2 that, by proper choice among a maximum of 4 message amplitudes, we obtain 
the minimum average weighted e r ro r  that is possible for messages of the class consid- 
ered. 

Another intuitive notion is that, for quite general conditions, what should be done is 
to increase the distance between the possible messages as much as the message con- 
straints will allow. For  the constraints on the average power and the peak power that 
we consider here (section 8. l), the maximum distance between messages will be given 
by a message quantized at either 3 o r  2 different levels, as illustrated in Fig. 26. 

conditions (ii) and (iii) of section 8. 1 appear to be necessary. 
(ii) and (iii) allow most cases of interest. By considering specific examples, we show 
that conditions (ii) and (iii) are needed to rule out the cases in which some specific posi- 
tions of the 4 impulses making up the message probability density are highly favored, 
because of the error-weighting function selected o r  because of peculiarities of the noise 
probability density. To illustrate this specifically, let us assume, for the quantized 
message considered, that the filter will give an output quantized at the same levels. This 

It is, in fact, the result of 

Some restrictive conditions on pn(v) and W(e) a r e  needed, and we shall indicate why 
First, note that conditions 
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Fig. 27. Noise probability density for which condition (ii) is not fulfilled. 

assumption simplifies our discussion, and it does not invalidate our argument to con- 
sider a filter possibly nonoptimum. The average weighted e r ror  w i l l  depend on two 
effects: 
an error,  i. e., to select the wrong message. (b) We give a certain weight, determined 
by W(e), to the magnitude of this error .  

Assume, first,  that condition (ii) is not fulfilled; pn(v) is even but may increase for  
v 3 0. If one of the message amplitudes is x, 
it is quite probable that the input amplitude w i l l  be approximately x i v1 and improbable 
that it will be approximately x i v This will favor x i v i v i  as  the positions of the 
other message impulses, in order to lead to the desired goal that for each region of the 
input only one value of the message be most probable. If, as required by condition (ii) 
p (v) does not increase for v 3 0, our best choice from this point of view is to maxi- 
mize the distance between messages. 

(a) W e  have a certain probability, tied to the noise characteristic, of making 

A possible case is illustrated in Fig. 27. 

0' 0 

n 

Consider now condition (iii). If W(e) is even but is allowed to decrease for e 2 0 

When one of the message amplitudes is x, the case illustrated in Fig. 28 could occur. 
then, by selecting x f eo for two of the other message amplitudes, no weight wi l l  be given 
to the resulting error .  
a necessary requirement. 

We showed in Section VI that, for most e r ro r  criteria, a message probability density 
made up of 3 impulses wi l l  lead to an arbitrarily small  W(e) as the maximum message 

Condition (iii) rules out such a case and appears, therefore, as 

-e 0 e e 

Error-weighting function for which condition (iii) is not fulfilled. 

0 

Fig. 28. 

76 



amplitude L is allowed to go to infinity. 

does not occur when the message probability density is made up of 4 distinct impulses, 
we have, LT this ?bit ing case, another indication of the correctness of the result claimed 
here. 

Since, as can be easily verified, this result 

We have carried out computations for a message probability density made up of 
2 

4 impulses and W(e) = e , when the noise probability density has the expression 

0 v < -2 

1 
4 - 2 C v V 2  PJV) = - i 0 v > 2. 

We have pm(v) as given by Eq. 56 and w e  require 

2 2 O C x  C1, 1 C y C 2 ,  ax + (1-a)y = 1. 

We have verified that for any y, 1 S y S 2, the mean-square e r r o r  wi l l  be minimum when 
x = 0 or x = 1. 
sage impulses, respectively, we have verified oiir result for this specific example. 

Since, under the constraint, these values correspond to 3 and 2 mes- 

8 . 4  LOWER BOUNDS ON THE MEAN-SQUARE ERROR 

By making use of the expression for the optimum mean-square filter when the mes- 

Since the 3 impulses reduce to 2 under the average power constraint 
sage is made up of either 3 or 2 impulses, w e  shall obtain lower bounds to the mean- 
square e r ror .  
when y = M, we shall study the mean-square e r r o r  for a fixed M and y varying from 
M to infinity. 
bound the minimum mean-square e r ror  in the range M S y ,C L. 

For a specific maximum message amplitude L w e  shall select as lower 

The optimum filter is given by the conditional mean 

and 

(v+y). 1 -a 1 -a 
pm(v) = a u(v) + 2 u(v-y) + - 2 

2 2 = M We make use of the power constraint (1-a) y to obtain 
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2 
2 M2 [Pn(x-Y)-Pn(xty)] _. 

1 e 2 = M  - -  2 r,2 

Thus w e  have an expression depending on pn(x), M, and y which has to be studied for 
each type of noise. Because of i ts  special importance we car ry  out the discussion for 
Gaussian noise. 

a. Gaussian Noise 

2 2  We take pn(x) = l/& u exp[-x /2u 1, and, by substitution in expression (72) and some 
simplification, we can write 

e y2/2u2 s 1 

sinh 2 3 =  7 exp [- $1 dx 

( -  - ) e x p E ]  t c o s h 7  Yx ' 

U 

U 

(7 3) 

If we let 

k =[$ - exp[$] 

2 2 2 and note that w e  can w r i t e  sinh yx/u2 = cosh p / a 2  - k t k2 - 1, then for part  of the 
integrand of (73) w e  have 

2 Yx k - 1  
sinh' % 

3- 
k t cosh 7 Yx 

U k t cosh 5 
= cash- - k t U 

2 

IT U 

Since we have 

we can write, after some simplification, 

-1 -=expl<][k--s 2u &IT k t cosh 2 STX 0- 

- 
k2 - 1 2 e 

M2 
(74) 
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Expression (74) cannot be easily evaluated, but w e  can conveniently find lower  bounds 

to it. We have to consider separately the cases for y = M and y # M. 
For  3' = 14, we h m e  now k = 0 and 

e 
2= Mx M cosh 7 

dx . 
U 

If we  note that 

for all x 2 0, cosh S e Mx/u2 
U 

we have 

2e -M2/2 u 2 2  2 2 - 
-X /2u e - M ~ / ~  dx e 2  

M2 6 0 -  

or 

2 
in which w e  let @(v) = I/& s-", e -x /2 && 

For y # M, we shall make 2 approximations in Eq. 74: The first  one leads to a very 
simple expression for the lower bound but gives a rather loose bound; the second one 
yields a tighter bound. 

APPROXIMATION 1: In Eq. 74 we can w r i t e  

1 dx = - 1 
k +  1 '  'G k t  1 k t cosh 2 

U 

and we have, therefore, the very simple result 

2 e 
M 

We shall have equality in 

-y2/2u 2 
l = e  

Y2 

M2 
-- 

(7 5) 

(75) when k = 1 or 

(7 6) 

For  larger values of y/M inequality (75) is valid. Fo r  smaller values of y/M we have, 
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in fact, an upper bound to the expression given in Eq. 74. 
For  y # M the expression of the performance index takes a very simple form, too. 

Since 
- 

k 

2 with k = u /M2, we have here 

nepers 

2 2  4 
APPROXIMATION 2: If we note now that cosh yx/a2 21 t y x /2a for all x, we have 

1 1 k t l t y  
2u 

The integral has been tabulated, and we have 

2 2 If we let p2 = 2 a  (ktl)/y , we have 

2 2 

P 
Tabulation of the quantity ep 1" e-x dx is common, and the expression 

a = l - p e  20  2 
p2/2 1" e-x 

I3 
dx has been tabulated by Sheppard. 

In terms of a and k we have 

- 
2 2 
- e 2 e  -y2/2a [ 1 t a  (k- l)], 
M 

which is valid over the same range of L/M as Approximation 1 
EXAMPLE: W e  take M / a  = 1. For  y = M we have 

- 
2 e 

M 
- 2[1-+(1)] = 0. 3174. 
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\SECOND APPROXIMATION 

I * to 1/2, and in that case the median v is any v such that v k S  V C V ~ + ~ .  The filter is not 
unique, however, and the choice v Therefore w e  can say that, 
in the case of a quantized message, the output of the optimum filter is quantized at the 
values of the message, and the noise wi l l  only affect the point of transition from one mes- 
sage level to another. 

* 
= vk is still possible. 

2 

\ -- 
1 2 3 - I. 

M 

Fig. 29. Lower bound on the mean-square error .  

For y # M the lower bound is valid for y/M > 1. 22. Approximation 1 gives 

e 2 -y2/ 2 M2 
7 2  e * 

- 
2 
- e 2 2 e  -y2/2M2 [l+(k-l)a], 
M 

in which k = (y /M -1) e y2/2M2 and a are as defined above. We obtain the graph given 
in Fig. 29. 

8.5  LOWER BOUNDS ON THE ABSOLUTE VALUE OF THE ERROR 

In order to obtain lower bounds to the absolute value of the e r r o r  we have to find the 
expression for the optimum filter whenever the message probability density consists of 
either 3 or 2 impulses. 
the e r ro r  criterion corresponds to the median of the conditional probability density of 
the desired output, given the input. 

We have seen that the optimum filter for the absolute value of 

The problem of finding the median of a distribution 
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Here we consider 3 impulses 

1 - a  (v) = a u(v) t - U(V-y) t - 2 U(V+Y) 
1 - a  

p m 2 
- 

and, therefore, W(e) (Eq. 53) is given by 

and the optimum filter takes the form 

for x E Q0 

g(x) = +Y for x E fZ1 c for x E Q2, 

in which no, nl, and R2, the regions of x giving each of the possible 1 

on the noise characteristic. We can write 

(77) 

rels, will depend 

2 where we have used the facts that pn(x) is even and g(x) is odd. Since (l-a)y2 = M , 
because of the power constraint we have 

We illustrate the determination of regions no, R1, and Q Z  for Gaussian noise. 

a .  Gaussian Noise 

The median of prnlmtn (v/x) is zero for x = 0. For  increasing x i t  wi l l  jump to the 

value y for the value xo such that the magnitude of the impulse at v = t y  becomes 1/2. 

For x > x 

the impulse at v = t y  is 7 

the median keeps the value y for Gaussian noise. Since the magnitude of 
0 

1 - a  PJX-Y) 

Pntm(x) 
, we shall have transition whenever 

1 - a  1 
2 Pn(X0-Y) = -p (x 1 2 n t m  o 

o r  

1 - a  1 - a  
( 1 4  pn(xo-y) = a p n o  (x ) t pn(x0-y) t 7 pn(xoty). 

Since 
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1 -x2/2u 2 
PJX) = - e 

&G Q 

2 and (1-a) y2 = M , 

for x we find 
0 

in which k is the parameter defined earlier. Therefore we have no = [-xo,xo], 
Q1 = ( x o , ~ ) ,  and Ct2 = (-00, -xo), and the expression for the absolute value of the e r ror  
becomes 

pn(x-y) dx . I W(e) = M2 [2&- 1) Lw pn(x) dx t J-x +X pn(x-y) dx t 2 -X s, O Y 
0 0 

Since p (v) is Gaussian, we use the  function n 

and we have 

EXAMPLE: We take M/IJ = 1, and we obtain the curve given in Fig. 30. The lower 
bound is constant up to L/M = 2. 

0 I I c 
1 2 3 L 

R 

Fig. 30. Lower bound on the absolute value 
of the error. 
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8 . 6  LOWER BOUNDS ON THE PROBABILITY THAT THE ABSOLUTE VALUE OF 
THE ERROR IS LARGER THAN SOME CONSTANT A(Prob(lel> A)) 

For this criterion of e r ro r  we sklect the filter g(x) such that I -A+g(x) A+g(x) Pd/i("/") dv 
is as  large as possible. If the conditional probability density is discrete and the impulses 
a r e  farther away than 2A, this integral w i l l  yield the magnitude of each of these impulses. 
Therefore we a re  led to select for g(x) the most likely value of the desired output, given 
the input, and the filter gives an output quantized at the values of the desired output. 
Here, we consider 

and the probability density consists of 3 impulses at most, with a minimum distance 
between impulses which is either 2M o r  y. 
we have a filter, a resulting average error ,  and, therefore, lower bounds that are inde- 
pendent of A. 
tions. Here, again, the optimum filter g(x) takes the form given by Eq. 77 in which 
regions 0 
the form 

Therefore, i f  A < (the smaller of M, y/Z) 

We shall confine ourselves to this case, which leads to simple computa- 

i l l .  and a2 depend on the specific noise. The average weighted e r r o r  has 
0' 

2 Since p (v) is even and we have (1-a) y = M2, we can write n 

To find no, Q , ,  and n2, we have to compare the magnitudes of the impulses of the condi- 
tional probability density. We have impulses at v = 0, v = ty. and v = -y and, since the 
filter is odd, we can limit ourselves to comparing the impulses of v = 0 and v = y. 

P, (XI 

Pntm(X) 
The impulse at v = 0 has a magnitude b = a and, for the impulse at v = y, 

0 

1 - a  Pn(X-Y) 

Pntm(x) 
we have bl = - . For x > 0 the transition from g(x) = 0 to g(x) = y occurs 2 

for the input xo such that bo = bl, that is, 

1 - a  
a P  n o  (x 1 = 2 p,(xo-y), 
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or, taking into account the power constraint, we have 

a. Gaussian Noise 

Here the transition point xo is found by the equation 

which gives 

The transition point xo has to be positive. If Eq. 78 yields xo S 0, we have transition 

at xo = 0 and the filter takes only the values t y  and -y and never the value zero. 
we let xo = 0 in Eq. 78, we have 

If 

2 2  
If y /M 
at x = 0 and we have S2 = [0], Q1 = (O,ob), Q2 = (-00, 0). and 

is smaller than the solution of Eq. 79, then the transition from -y to +y occurs 

0 

- 
W(e) = 1 - 3 

Y Y 
2 2  

2 0 

When y /M 
S2 = (-a, -x ), and the average weighted error becomes 

is larger than the solution of Eq. 79, we have no = (-xo, txo), Q1 = (xo, m), 

or 
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EXAMPLE: We take M = Q. 

fore  for  y/M > 1. 12 we have xo > 0. 

Here the solution of Eq. 7 9  is y/M = 1. 12 and there- 
The graph of the minimum probability is given 

2 

Fig. 31. Lower bound on Prob(1el > A). 

in Fig. 31. The lower bound is a constant up to L/M = 2. Note that when we use a non- 
optimum filter giving g(x) = 0 for all inputs, the probability of e r ro r  is the sum of the 
magnitudes of the impulses at *L. 
M /L2; therefore the lower bound wi l l  be smaller than M /L 

Because of the power constraint, this is equal to 
2 2 2  for any noise. 
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IX. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

9.1 CONCLUSIONS 

The purpose of this work was to gain some insight into the process of filtering, prin- 

cipally nonlinear filtering. 
filters which by-passed the difficult analytical problem, in particular, in the case of 
non mean-square filtering, of determining the optimum filter from the input statistics. 
In this report, we indicate in which cases linear filtering will  be the only use- 
ful processing of the input, and our central result is that a crudely quantized 
message (a message with "nonlinear" characteristics) leads to the best possible sepa- 
ration from the noise for most e r ro r  criteria. 
structure of the optimizing message, the problem of lower bounds to the average weighted 
e r r o r  can be solved, although it requires knowledge of the optimum filter. With 
respect to the usefulness of the bounds thus obtained we note that 

To this end, we asked a set  of questions on the behavior of 

Because of the extremely simple 

(i) Since there is a message probability density of the class considered which will 

(ii) Whether this bound, which corresponds to a quantized message, is a good indi- 
give the lower bound, we do have a good o r  I1tightn bound for the constraints used. 

cation of what to expect, when the message is not quantized, for instance, is a point that 
requires further investigation. We feel, however, that the bound will  be of value as long 
as the peak-to-average power ratio is not too large. (Note, for instance, that this ratio 
is equal to three for a flat probability density.) This leads naturally to the discussion 
of other meaningful message constraints (see section 9.2b). 

More generally, we believe that the investigation of properties of the message which 
lead to good or poor separation from the noise is a new approach to the problem of fi l-  
tering. The answers obtained give insight into this difficult problem and provide some 
indication of the results to be expected. 
needed before undertaking the lengthy computations for the determination of the optimum 
filter arising in a complex situation. 
nonlinear prediction, and we note that most of the questions raised in this work a r e  rele- 
vant in this related field as well. 

We feel that both insight and motivation a r e  

Similar comments a r e  applicable to the field of 

9.2 SUGGESTIONS FOR FURTHER RESEARCH 

a. Fil ters with Memory 

It is clearly of interest to extend these results to filters with memory and to study, 
in this more  general case, the messages that lead to a poor o r  a good separation from 
the noise. Although we shall not undertake here  a general discussion of this problem, 
we shall indicate in a simple case a possible formulation. 
to a filter that operates on the input at two different time instants and consider the speci- 
fic question of upper and lower bounds on the average weighted e r ro r  for a given filter. 

tically independent processes. 

We shall restrict ourselves 

Consider an input signal x(t), x(t) = m(t) + n(t), in which m(t) and n(t) a r e  statis- 
It is desired to estimate the message at times t l  and 
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t 
known. 
assume that the filter characteristic is known. 

from the knowledge of the input at the same time instants. The noise statistics a re  2 
Let h1, a2 be the estimates of m(tl)  and m(t2), respectively, and let us 

We have 
A A  (ml, m2) ={g(xlD x2), h(xlD “ 2 f ) D  

in which g(xl,x2) and h(x1,x2) a r e  known functions of the input amplitudes x1 and x2. 
Note that g(x1,x2) and h(xl,x2) a r e  not necessarily unrelated and that, i f  the input 
processes are stationary, we should have g(xl, x2) = h(x2, xl). Let the error-weighting 
function be a scalar function of two variables such as 

2 2  W(el,e2) = e l  t e2. 

For the average weighted e r ror  we can write 

. . .  dxldAldx2dA2, 

but we have 

If we let 

we have 

It is clear that F(Al, A2) is a known function of A 1  and A2 for a given filter. 
problem is to find the specific message probability density pm 

maximize or  minimize expression (80). under some message constraints. 
interest is the set of constraints 

Our 
(A , A2) that wi l l  

1’ m2 
Of particular 

in which i, j = 1,2 and the correlation matrix of the message R.. is specified. To obtain 
9 
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useful bounds, we shall most probably need here, also, a constraint of the peak ampli- 

tude of the message. 
as follows. 

For these constraints the problem considered can be expressed 

If we have available the statistical information that is necessary to find the optimum 
linear filter, and we know, furthermore, the peak amplitude of the message, What is 
the message most (or least) separable from the noise by a given nonlinear filter (or by 
the optimum nonlinear filter)? The solution of this problem by a generalization to the 
case of several variables of the method used in Section VII appears possible but will  
not be attempted here. We feel that a message quantized at  4 different levels wi l l  again 
be the message giving the extrema of the average weighted error .  For the optimum 
filter, an interesting measure of performance is the ratio of the average weighted e r ro r  
for the best message to the average weighted e r ro r  achievable by an optimum linear 
operation on the input. As does the performance index for no-memory filters, this index 
will  indicate the improvement in performance resulting from the nonlinear part of the 
filter. 

b. Other Constraints on the Message 

Although in Section VIII we considered specifically an average power constraint on 
the message, it is clear, from the results of Section VII, that, for all constraints on 
the message of the form I F(v) pm(v) dv = constant, the optimum message probability 
density wi l l  be made up of 4 impulses, whether or  not the optimum filter is used. It 
is to be expected, however, that in most of the cases for which filtering is to be per- 
formed, the message wi l l  have a large number of possible amplitudes o r  possibly a con- 
tinuous probability distribution. 
message may detract, therefore, from the usefulness, in such cases, of our lower 
bounds on the average weighted error .  It would be desirable to find a constraint that 
requires that the message probability density be free of impulses, and then find the 
minimum average weighted e r ro r  under this constraint. Constraints of the form 
I G[pm(v)] pm(v) dv = constant, in which G[pm(v)] is some appropriate function of p 
have to be investigated. An entropy constraint I log[pm(v)]pm(v) dv = constant belongs 
to this class and may free p (v) of impulses, since any impulse wi l l  give the value -00 

to the entropy. 
spread usage in the field of communication, the applications of this specific constraint 
to the message seems to be a desirable area of future work. 

The low number of quantization levels of the optimum 

(v). m 

m 
Because of the physical connotations of entropy and because of its wide- 
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APPENDIX A 

DERIVATIVES OF T H E  NORMALIZED MEAN-SQUARE ERROR 
OF LINEAR FILTERS WHEN THE NOISE L E V E L  k IS THE 

INDEPENDENT VARIABLE 

In order to facilitate the study of derivatives, we define 

B = i (a). A = HnnO(a) mm 
Hence, 

Since the integrand kA kAB is an integrable function of w for all values of k, and 
.-. 

AB‘ exists and is a continuous function of w and k, we can write the B kAB - - 
B k k A t B -  [kAtBI2 
first derivative of P(k), 

by differentiating with respect to k under the integral sign. A and B a r e  non-negative 
dP (k) 

quantities for all w;  hence 7 is always positive. 
The slope at the origin is 

When k -m, the first  derivative goes to zero. 
The second derivative is 

- A ~ B ~  du 
[l&+BI3 

dk2 - J’B do 

-- d2P (k) 

The second derivative is negative for all values of k;  hence p(k) is a concave function 
of k. 
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APPENDIX B 

PROOF OF THE CONCAVITY OF r(k) VERSUS k 

If we use the notation of Appendix A, we can write 

and 

If r(k) is concave, this second derivative is negative and w e  need to show that 

Let 

B f =  

(kA+B) 

2 
A'B' 

<SkAB:B dw S[kA+B]3 dw. 

AB 

(kA+B) 3/2 
g =  

We need, therefore, 

and this is satisfied by the well-known Schwarz inequality. 
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APPENDIX C 

k j I t  CHARACTERISTIC FUNCTIONS THAT SATISFY P(t)  = [P(ct)] e 

The relation considered 

is interpreted to mean that for any c > 0, there is a k > 0 and an I such that (C-1) 

holds. 
we can write 

This condition has to be satisfied for all t l ,  --oo c t l  c t c o .  By differentiation, 

j I t  k jQtl  
kPl(ctl)  Pk-'(ctl) t l  e dc t P (ct,) In [P(ct,)] e dk 

k j I t l  
t jt, P (ct,) d dI  = 0, 

in which P'(x) denotes differentiation with respect to the argument x. Dividing by 
P (ct,) ejmt and letting ctl  = t ,  we obtain k 

d I  k 
-- t dc t In [P(t)] dk + j t  - = 0, 

C P(t)  

which can be rearranged to give 

in which A is independent of t, k, and c. 
We have, therefore, the relations 

If k and c a r e  both real, then A is real. 

(C-3) 
- l /a c = D k  , 

in which D is a positive constant. 
between c and k, and that to each positive value of k we can assign a positive value 
of c. 

Instead of solving Eq. C-2 by writing differential equations for the magnitude and 
the phase of P(t),'l we shall show that any probability distribution function such that 

Eq. C-1 is satisfied is a stable distribution function and conversely. 

We see  that there is a one-to-one correspondence 

DEFINITION: The distribution function F(x) is called stable i f  to every a ,  > 0, b,, 
there correspond constants a > 0 and b such that the equation F(alxtbl)  * 

The equation is given 
a2 > 0, b 
F(a2xtb ) = F(axtb) holds, where the s ta r  denotes convolution. 2 
in terms of distributions. 

2 

For the characteristic function P(t) the defining relation gives 
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P[+] P [;I = P[:] ,jet, 

in which p = b - bl - b2. 

c = al and c = a2 and gives 
Now w e  show that Eq. C-1 implies Eq. C-4. Assume that (C-1) is satisfied for 

which, by simple changes of variable, become 

Hence, 

As we have shown earlier in connection with Eq. C-3, given kl + kZ, we can find some 
a and some p such that 

Hence, w e  have Eq. C-4, and hence (C-1) implies ((2-4). 

To show the converse w e  use Gnedenko and Kolmogorov's resul t l l  on the canonical 
representation of stable distributions. 

THEOREM: In order  that the distribution function F(x) be stable, it is necessary 
and sufficient that the logarithm of its characteristic function be represented by the 
formula 

lnP( t )  = jyt - d / t / 0 ( l + j 6  sgnt co(t.a)), (C-5) 

where a, 6, y, and d are constants (y is any real number, -1 d 6 d 1, 0 < a S 2, d 3 0), 

and 

o(t, a) = 

- In It1 i f  a = l  I: 
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We now shall verify that i f  the probability distribution is stable, and, hence, Eq. C-5 

holds, then Eq. C-1 is satisfied. That is to say, i f  In P(t) is given by Eq. C-5, it is 
possible to find k and Q such that 

k In P(ct) t jQt = In P(t) (C-6) 

For stable probability distribution the left-hand member of Eq. C-6 can for any c > 0. 

be written 

k In P(ct) t jQt = jkyct - dk c a  Itla{l t j 6  sgnt w(ct, a)) t jQt. 

If a # 1,  then w(ct, a) is independent of t. Hence, by taking 

a -a kc = l - k = c  

kyc t 1 = y - Q = ~[l-kc],  

w e  satisfy Eq. C-6. If a = 1, we now have 

2 k In P(ct) t jQt = jykct - dk c( It1 t j6t Ir In c Itl) t jQt. 

By writing In c(t) = In c t In (t) w e  have 

2 k In P(ct) t jQt = jt[kyc t B-dkc 6 -rr In c] - dkc{ It[ t j6t 1 In Itl}, 

and w e  now satisfy Eq. C-6 by taking 

1 kc = 1 -k = -  
C 

2 2 kyc t Q - dkc6- ln c = y - Q = d6 - In c. 
R 7.r 

This completes the proof that stable probability distributions that satisfy Eq. C-4 will 
satisfy Eq. C-1 also. 
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APPENDIX D 

CONDITIONS FOR THE EXISTENCE OF A NONZERO LOWER BOUND 
ON THE MEAN-SQUARE ERROR 

We c o n s i d e r  t h e  spec i f ic  message probability density 

pm(x) = (1-2a) u(x) + a u(x-A) + a u(xtA), 

w h e r e  a = M2/2A2. 
The optimum f i l t e r  in t h e  mean- squa re  sense is 

and we  have  t h e  corresponding mean-square  error 

By substi tution, 

and 

. 

which c a n  be  wr i t t en  

Let I be the integral within t h e  bracket.  We shall show tha t  if t h e  variance of the  

T h e  n u m e r a t o r  
- 

no i se  cr2 is finite I - 1 as A - 00 and, therefore ,  e2 - 0 as A - 00. 
N(x) of the integral I, when expanded, becomes  

n 

2 2 N(x) = p,(x-A) + pn(x+A) - 2pn(x-A) pn(xtA). 

Because  of the  symmetry of the integrand w e  c a n  w r i t e  
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We make the change of variable x - A = y and write 

L J 

or,  again, 

Let M(y) be the second part of the integrand. Then, i f  B is some constant, we write 

-B 

We show now that the first  term goes to 1 and the sum of the other two terms 
becomes arbitrarily small as B - 00. If we assume that the noise has a finite variance 
u2 we can make use of the Tchebycheff inequality 

-B 

n 
2 
n 

2B2 

U 
P,(x) dx S - 

For A > M it is easy to see  that -1 SM(y) S 1, and, hence, 

with 

Now, consider the first  term ,-’B” pn(y) M(y) dy and take A >> B; then, for -B G y c B, 

we can write lim M(y) = 1, i f  pn(y) has a finite variance, because we have 
A-m 
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Hence, by keeping A >> B in the limiting process, w e  have 

+B 
lim I =  

A-a, 
B-a, 

This, in turn, gives 
- 

lim e 2 = O .  

A-a, 
Q. E. D. 
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APPENDIX E 

EXTREMA OF G = sf G(x) p(x) dx UNDER THE CONSTRAINT 

B 
SA F(x) P(X) dx = F 

We would like to find the probability density p(x) that minimizes the integral 

G = s,” G (x) p(x) dx 

under the constraint 

(E-1) 

in which A and B a r e  fixed finite limits, F is a given constant, and F(x) and G(x)  a r e  
known functions of x. 

We t ry  first the classical formulation of the calculus of variations. 

A 

If we let 

y (x) dx = 1, then by the 2 B 2  p(x) = y (x) to guarantee positiveness and use the condition I 
use of the Lagrange multipliers X and p we a r e  led to minimize the expression 

B 
G 1  = JA [G(x)+XF(x)tp] y2(x) dx. 

The corresponding Euler-Lagrange equation gives 

2y(x)[G(x)+XF(x)+p] = 0, 

which can only be satisfied, in general, by y(x) = 0. This implies that there a r e  no 
solutions satisfying the usual conditions on continuity and differentiability of y(x) which 
make the Euler-Lagrange formulation valid. 

A different approach to the solution of this problem is needed. Let us formulate an 

auxiliary and related problem. 
(E-2) and giving some value to the integral of (E-1). For this arbitrary p(x), shown in 

Consider an arbitrary p(x) satisfying the constraint 

A B x  

Fig. 32. Division of an arbitrary p(x). 
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Fig. 32, the regions 1, 2, and 3 a r e  defined by two arbitrary cuts of the x axis between 
A and B. For this p(x) w e  shall prove a lemma that establishes that, by proper choice 
of twn nf the three regions and normalizationz we can form a probability density p,(x) 
such that 

(E-3) 

(E-5) 

Similarly, by proper choice of two of the three regions, we can form a probability density 
p (x) such that the two constraints a r e  satisfied and 

2 

JAB G(x) p26)  dx 2 s,” G b )  P(X) dx. 

Before proving this lemma we  first define 

in which the indices R1, R2, R 
tively. Hence, we can write 

denote integration over the regions 1, 2, and 3, respec- 3 

G = mlGl t m2G2 + m3G3 

F = m l F l  t m2F2 + m3F3 

ml  + m2 + m3 = 1, 
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and the lemma takes the following form. 
LEMMA: If ml ,  m m 2 0 ;  m t m t m = 1; m F t m2F2 t m F = F; and 2' 3 1 2 3 1 1  3 3  

m G t m G t m3G3 = G, then there exists i and j [i, j E (1,2,3)] and e [0 S O Q  s 11 

such that 
1 1  2 2  Q 

eQGi t (l-eQ) G S G ,  
j 

OQFi t (l-eQ) F. = F 
J 

and there exist k and P [k, P E (1,2, 3)] and 8 [0 ,<€I P P S 13 such that 

e F t (1-e ) F~ = F 
B k  B 

e G t (1-e ) G  > G .  
P k  P P  

PROOF Both parts of the lemma can be proved simultaneously. Assume that F1 S F 
and F2, F 2 F; then, t o  fulfill the condition Fi t (1-0) F 

given by 

we have two possible 8's 
3 j' 

elF1 t (i-el) F~ = F 

e2F2 t (1-e2) F3 = F 

o r  

F, - F 

F, - F 

We define 

3 m 
b 

M3 =- 2 
m 

b 
M2 = - 1 - el  1 - e2 

and show that we have M2, M3 2 0 and M2 t M 3  = 1. The inequality is clear, since 

e1,e2 S 1 and 

m 2 +3 m = m  p-:;] t m  3 r 3 - * i ]  F - F 1  
2 F -  M2 t M3 = - 1 - e 1  1 - e2 

m F t m3F3 - Fl(m2tm3) F - Fl(mltmZtm3) 
= 1. - - - 2 2  - 

F - F1 F - F1 

By construction, we have 

m = M2(1-e1) m = M3(1-02); 3 2 

hence, 
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m l  = 1 - (mZtm3) = M2e1 t M3e2.  

We now can write 

G = m G + m G t m3G3 = (M201tM3e2) G 1  + M2(1-01) G2 t M3(1-e2) G 3  1 1  2 2  

2 1 1  = M [e G +(1-Ol)G2] t M3[e2Gl+(1-B2)G3], 

and, since M2 t M 3  = 1 ,  we have, necessarily, e l G 1  t ( l - e l )  G 2  6 G and 

e G t ( l -e2)  G3 3 G  o r  8 G t ( l - e l )  G2 3 G  and 02G1 + (1-02) G g  C G .  2 1  1 1  
This establishes the two parts of the lemma for F1 6 F and F2, F3 2 F. By con- 

sidering the other case Fl,  F2 s F and F3 2 F and using a similar reasoning, the proof 
of this lemma can be completed without difficulty. 

We interpret these resul ts  in terms of the probability density p(x) by replacing F1, 
and so forth, by their integral expressions. This leads for Eqs, E-4 and E-5 to the G1' 

express ions 

and the probability density pl(x) is given by 

in which [p(x)] denotes the portion of the probability density p(x) which belongs to 
Ri 

A B x  

A E C D B x  

Fig. 33. Second step in the minimization. 
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region Ri. Graphically we have, for instance, the case illustrated in Fig. 33 in which 
region 2 of p(x) has been eliminated. 

Fig. 33) we can apply the lemma to p,(x) and form a new probability p2(x) that is non- 
zero only for t w o  of the three ranges of x defined by AE, CD, DB. 
p2(x) w i l l  satisfy the constraint and lead to a smaller value of the integral G to be mini- 

mized, that is, 

If we define, in turn, regions 1, 2, and 3 for  p,(x) by the arbitrary cut in D (see 

This probability 

B 
G 2  = G(x) p2(x) dx s,” G(x) p,(x) dx = G1. 

We see  that each successive subdivision and application of the lemma monotonically 
reduces the base of the probability density which needs to be considered in the mini- 
mization. 
density goes to zero, since the cuts a r e  made arbitrarily. At any intermediary step 
we have a probability density that consists, at most, of two parts: hence, in the limit 

the probability density will  be made up, at most, of two impulses. 

As  the number of subdivisions goes to infinity the base of the probability 

Hence, by successive applications of the lemma we have established that the prob- 
ability density p(x) which minimizes (or maximizes) Eq. E-1 under the constraint of 
(E-2) is made up of, at most, two impulses. 
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